代写ECON1004: INTRODUCTION TO MATHEMATICS FOR ECONOMICS SUMMER TERM EXAMINATIONS 2018代做Statistics统计

SUMMER TERM EXAMINATIONS 2018

ECON1004: INTRODUCTION TO MATHEMATICS FOR ECONOMICS

TIME ALLOWANCE: 2 HOURS

Answer ALL FIVE questions in Section A and TWO questions from Section B. Each question in Section A carries 10 marks and each question in Section B carries 25 marks.

In cases where a student answers more questions than requested by the examination rubric, the policy of the Economics Department is that the students first set of answers up to the required number will be the ones that count  (not the best answers). All remaining answers will be ignored.

SECTION A

1.         Define the rank ofa matrix.

Explain how to find the rank of (i) an echelon matrix, (ii) a general matrix.

Find the rank of

2.         Define  the terms positive definite and positive semidefinite as applied to quadratic forms.

Determine directly from the definitions whether the quadratic form.

q(x1, x2, x3 ) = x1(2) + x2(2) + x3(2) - x2x3

is (i) positive definite, (ii) positive semidefinite but not positive definite, (iii) neither of these.

3.         Suppose the production function of an economy is

Q = F(K, L)

where Q, K and L denote  aggregate  output,  capital  and  labour  respectively  and F(K, L) is a smooth homogeneous function of degree s where s is a positive constant. Suppose further that K and L have the same constant proportionate rate of growth m. Use the chain rule and Euler’s theorem to find the rate of growth of output.

4.         Find the gradient vector and the Hessian matrix of the function

3x2  - 6xy + y4  + y2  .

Verify that (1,1,-1) is a critical point and determine whether it is a local maximum, local minimum or neither.

5.         A consumer has a utility function

U(x1, x2 ) = x1(3)x2

where xi denotes the consumption ofthe i-th commodity.

If the price of the i-th commodity is pi and the consumer’s income is m, express the consumer's problem as a constrained maximisation problem.

Write down the Lagrangian for the problem and obtain the first-order conditions.

SECTION B

6.         (a) Define the term echelon  matrix and say what the 4 types of echelon matrix are. Hence show that the number of solutions ofthe simultaneous linear equations Ax = b is 0, 1 or infinity where A is an m×n matrix, x is a vector in R n and b is a vector in Rm .

(b) Given that the equation

ABx = d ,

where


has a solution, find k.

7.         (a) For the function

f (x, y) = -3cx2  + 2cxy - y2  - 2x + 5y

where c is a constant, find the gradient vector and the Hessian matrix. For what values of c is f (x, y) concave?

When c=2, explain how you know that any critical point of f (x, y)  must be a global maximum point. Hence find the global maximum.

(b) Suppose the profit of a firm is given by the smooth concave function  Π(x1, x2 )  where x1     and x2 denote   the  output  levels  of  the  two  products  which  the   firm manufactures. Write down conditions, in terms of the first-order partial derivatives of

Π , sufficient for the profit to attain its global maximum value at  (a, b) .

In the particular case where

Π(x1, x2 ) = -2x12  + 4x1x2  - 3x22  +10x1 -14x2  - 3

verify that Π is concave and find the profit-maximising output levels and the maximum profit.

8.         Consider the production function

Q = (K1/ 2  + L1/ 2)2

where Q, K and L denote  output,  capital  and  labour  respectively.  Show  that  the isoquants are negatively sloped and convex.

Find the coordinates of the points where the isoquant, along which Q takes the value c, (c > 0) , meets the K and L axes. Find also the slope of this isoquant at each of these points. Sketch the isoquant diagram.

When the prices of capital and labour are r and w respectively, find the conditional input demand functions and the total cost function.

Find also the elasticity of substitution.

9.         Consider the differential equation

where a and b are   constants   with a ≠ 0 .   Find   the   stationary   solution,   the

complementary solution and the general solution.

Find also the range of values ofa for which the stationary solution is stable.

Now consider the following two difference equations:

(i)        Δyt + ayt = b ,

(ii) Dyt + ayt = b

where  Δyt = yt +1  — yt , Dyt = yt yt1   and a and b take the same values as in (*).

For each difference equation, find the stationary solution, the complementary solution and the general solution. Find also the range of values of a for which the stationary solution is stable.

For each of the following statements, say whether it is true or false, giving reasons for your answer:

(a) If the stationary solution of the differential equation (*) is stable, then the stationary solution of at least one of the difference equations (i) and (ii) must be stable.

(b) If the stationary solution of at least one of the  difference equations (i) and (ii) is stable, then the stationary solution of the differential equation (*) must be stable.

(c) There is a set of values of a for which the stationary solutions of the differential equation (*) and the difference equations (i) and (ii) are all stable.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图