代写ECON1004: INTRODUCTION TO MATHEMATICS FOR ECONOMICS SUMMER TERM EXAMINATIONS 2017调试SPSS

SUMMER TERM EXAMINATIONS 2017

ECON1004: INTRODUCTION TO MATHEMATICS FOR ECONOMICS

TIME ALLOWANCE: 2 HOURS

Answer ALL FIVE questions in Section A and TWO questions from Section B. Each question in Section A carries 10 marks and each question in Section B carries 25 marks.

In cases where a student answers more questions than requested by the examination rubric, the policy of the Economics Department is that the students first set of answers up to the required number will be the ones that count  (not the best answers). All remaining answers will be ignored.

SECTION A

1.       State a criterion in terms of the determinant for a square matrix to have an inverse.

Find the values ofa for which the matrix

has an inverse.

2.       Let

Verify that any two of the three 3-vectors u,v,w are orthogonal. Find scalars λ, μ,v such that [λu μv vw] is an orthogonal matrix.

3.         Suppose

z = x ln(1+ xy) .

Use the small increments formula to find an approximation to the change in z when x changes from 1 to 1+ Δx andy changes from 1 to 1+ Δy where Δx and Δy are small.

Now suppose you are additionally given

x = 1 + t, y = t 2 .

Use the chain rule to find dz / dt when t = 1.

4.         Show that the function

x2  - 2xy + 5y2  -10x + 2y

is convex.

Find its global minimum value.

5.         Find the general solution of the differential equation

Also find the solutions which satisfy y=1 when t=0 and y=0 when t=1 and sketch them on the same axes.

SECTION B

6.         (a) Define the terms linear combination, linear dependence and linear independence as applied to vectors.

Suppose a,b and c are three vectors in Rn . Show that a,b and c are linearly dependent if and only if there exist scalars α,β and γ, not all zero, such that

αabc=0 .

State the generalisation of this result to the case ofk vectors in Rn .

(b) Define the term echelon matrix and say what the 4 types of echelon matrix are. Hence show that the number of solutions ofthe simultaneous linear equations Ax = b is 0, 1 or infinity where A is an m×n matrix, x is a vector in R n and b is a vector in Rm .

(c) Use the results in (a) and (b) to show that ifwe have a set of more than n vectors in Rn , these vectors must be linearly dependent.

7.         (a) Suppose the production function of an economy is

Q = F(K, L)

where Q, K and L denote aggregate output, capital and labour respectively.

Explain what is meant by saying (i) F(K,L) displays diminishing returns to each factor, (ii) F(K,L) displays increasing returns to scale.

Now consider the special case

F(K, L) = KαLβ (α, β > 0) .

Find a condition in terms of α and β for the production function to exhibit decreasing returns to scale. Show that if this production function exhibits decreasing returns to scale then it also exhibits diminishing returns to each input. State, with reasons, whether the converse is true.

(b) Now suppose the production function is

G(K, L, t) = ertKαLβ (α, β, r > 0)

and K and L have constant rates of growth m and n respectively. Find the rate of growth of output.

8.         Explain what is meant by a homogeneous function of 2 variables of degree h. Show that the partial derivatives of such a function are homogeneous of degree h-1 .

Show that the utility function

U(x, y) = xαyβ ,

where α and β are positive constants, is homogeneous and state the degree of

homogeneity, h. Verify that the two marginal utilities are homogeneous of degree h-1 .

For this utility function, show that the slope of the indifference curves is constant along the line

y = cx

where c is a positive constant. Draw a diagram to illustrate this result.

Now show the same result is true when the utility function is a general homogeneous function of 2 variables.

9.         A consumer has a utility function

where xi denotes the consumption of the i-th commodity. Show that each indifference curve is negatively sloped, convex and has two asymptotes. Find the equations of the asymptotes   corresponding   to   the   indifference   curve U = c (c > 0) .    Sketch   the indifference curve diagram.

If the price of the i-th commodity is pi and the consumer’s income is m, express the consumer's problem as a constrained maximisation problem.

Find the demand functions, explaining carefully each step of your argument.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图