代做Term Project AD 717 Final Project代做Prolog

Term Project AD 717

Final Project

For your term project, you are going to build a portfolio of six stocks and write a prospectus of your mini fund.

Consider the following three investors:

•    Kim is a 25-year-old young professional, employed in a major city in the northeast. Since joining the workforce three years ago, they contribute as much money as possible to his retirement accounts which is invested in a diverse set of index funds. An avid fan of Benjamin Graham's "The Intelligent Investor", they have decided to consider a few individual stocks of companies with good and stable long-term prospects as well as a great management.

•    Nicole is 52 years old, and a few months ago, she retired from her well-paying job after aggressively saving and investing her money prudently for much of her life. While she could go back to work if necessary, she prefers her financial independence. In order to maintain a steady cash-flow, her portfolio is heavily geared towards high yielding stocks, allowing her and her family to live of dividend payments for the most part. Aware of the downturn of General Electric and their dividend cut, she focuses on companies from which she expects a solid and steady dividend growth.

•    Peter is in his mid 30s. He did not start a well-paying job until two years ago, and therefore, he is behind on his retirement savings. To make up for lost time, he is contributing the maximum allowed to his individual retirement account (IRA), which is invested in market ETFs. Additionally, he sets aside $10,000 every year for risky high-growth investments.

Select one of these investors as your client for whom you create the portfolio of six stocks. Your stocks must be in the stock price file on the blackboard under term project (S&P 400 Blackboard.xlsx). Stocks in that file are companies in the S&P 400 as of early October 2024 with five years’ worth of data.

Then, perform. the following exercises:

1.    Explain your criteria to filter the S&P 400 to fit your investor’s goals and objectives. Make sure you justify why these criteria are appropriate for your investor. Then explain the criteria you use to identify the best stocks in this subset. Your criteria should align with the investor’s preferences, but you may get creative.

2.    Write two paragraphs per stock supporting your selections with the company’s background and business model. Support your answers with qualitative and quantitative data, including, but not limited to, a discussion of management, corporate performance and profitability metrics.

3.    Copy your stocks’ prices from the shared spreadsheet on blackboard into your own spreadsheet

Compute monthly returns. (Note that you need 61 prices to compute 60 months’ worth of returns).

4.    Download the file https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-

F_Research_Data_Factors_CSV.zip. In this file, you find excess market return, SMB, HML and the risk-free rate. Use the risk-free rate to compute the excess returns for your stocks. This file has also been copied to blackboard under term project (FamaFrenchData_2024.xlsx).

5.    Run a regression of the stocks’ excess returns against the excess market return to find the CAPM beta for each company’s shares. You can check your result against Bloomberg or Yahoo Finance.


6.    Make a forecast for the alpha of each stock, that is, the return that you expect the stock to perform minus the  return predicted by the CAPM. Your forecast should be justified based on your analysis in Part 1.

7.    Build an active portfolio with six stocks according to Chapter 27 in our textbook.

8.    Run a regression of the portfolio returns (using the weights you find in the previous step) against the excess market return, SMB and HML to find the market beta, SMB beta and HML beta of the entire portfolio. Categorize your portfolio according to

a.    defensive, neutral or aggressive for the market beta;

b.    small, neutral or big for the SMB beta;

c.    value, neutral or growth for the HML beta.

9.    Based on your findings and the investment strategy, identify a benchmark portfolio against which you will compare your portfolio. Adjust the benchmark portfolio’s risk as discussed in Lecture 11.

10. Consider the mutual fund report above. Recreate the sections in purple for your portfolio. A bigger version of the image may be found at the end of this document. Enhance your analysis with the portfolio analytics on the Bloomberg terminal, using the function PRTU.

Term Project Feedback: As you work on your term project, I am available for feedback if you run into problems. The feedback is intended to point out ‘red flag’ or obvious errors, it is not intended to be an ongoing back and forth revising your project. Feel free to reach out to me. I’m happy provide feedback up to Thursday May 1, 2025.

Notes on Fama-French Factors:

•    The Fama-French regressions give you a coefficient for the market risk of a stock or portfolio (βMKT ), its exposure to the risk proxied by the size factor (βSMB ) and its exposure to the risk proxied by the    value factor (βHML ).

•    The interpretation of βMKT  is the same as before:

o If an asset’s estimate for βMKT  is 1, then it has the same market risk as the market portfolio.

o If an asset’s estimate for βMKT  is less (greater) than 1, then it is a defensive (aggressive) investment with respect to market risk.

•    The interpretation of βSMB  is as follows:

o If an asset’s estimate for βSMB  is greater than 0, i.e., positive, then it behaves more like a portfolio that is long small companies and short big companies.

o If an asset’s estimate for βSMB  is less than 0, i.e., negative, then it behaves more like a portfolio that is short small companies and long big companies.

o If an asset’s estimate for βSMB  is indistinguishable from 0 because it’s p-value is greater than

0.05, then the assets is balanced with respect to firm size as measured by market cap.

•    The interpretation of βHML  is as follows:

o If an asset’s estimate for βHML  is greater than 0, i.e., positive, then it behaves more like a portfolio that is long value firms and short growth firms.

o If an asset’s estimate for βHML  is less than 0, i.e., negative, then it behaves more like a portfolio that is short value firms and long growth firms.

o If an asset’s estimate for βHML  is indistinguishable from 0 because it’s p-value is greater than

0.05, then the assets is balanced with respect to value vs. growth.

•    Examples using 5 years of monthly data from 2018 to 2022:

o VTV ETF, capturing large value firms in the US market:

Coefficient

Std. Error

p-value

MKT

0.876

0.025

0.000

SMB

-0.133

0.051

0.012

HML

0.363

0.031

0.000

The estimate for βMKT  is 0.876, which is slightly below 1. We may classify this ETF as neutral to moderately defensive

The estimate for βSMB  is -0.133, which is negative with a p-value of 0.012, i.e., less than

0.05. We classify this ETF as behaving more like a portfolio short small firms and long big firms. We may also say the portfolio tilts slightly towards big firms since the coefficient  is small in magnitude.

The estimate for βHML  is 0.363, which is positive with a p-value of practically 0.000, i.e.,   less than 0.05. We classify this ETF as behaving more like a portfolio long value firms and short growth firms. We may also say the portfolio tilts towards value stocks since the coefficient is moderately big in magnitude.

o XLV ETF, capturing the Health Care sector in the S&P 500:

Coefficient

Std. Error

p-value

MKT

0.715

0.065

0.000

SMB

-0.221

0.132

0.100

HML

-0.075

0.079

0.342

The estimate for βMKT  is 0.715, which is below 1. We may classify this ETF as moderately defensive

The estimate for βSMB  is -0.221, which is negative with a p-value of 0.100, i.e., not less than 0.05. We classify this ETF as behaving like a portfolio that is neither overweight in small or big firms - or as neutral in the size factor.

The estimate for βHML  is -0.075, which is negative with a p-value of practically 0.079, i.e., not less than 0.05. We classify this ETF as behaving more like a portfolio that is  neither overweigh in value firms nor growth firms - or as neutral in the value factor.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图