代做ECON1066 Basic Econometrics代做Python程序

ECON1066

Basic Econometrics

Individual Assignment

This is an individual assignment where you must work alone.  You must submit an electronic copy of your assignment in Canvas in pdf, doc or docx format along with your R-code. Hard copies will not be accepted. Show your calculations (if any) as well as answering the questions in clear full sentences. Log referrers to natural logarithm!

Use the dataset: LifeExpectancy.RData

Estimating the driving factors of life expectancy internationally provides valuable insights into the factors  influencing  the  health  and  longevity  of populations  across  different  countries.  It  enables researchers to identify socio-economic, environmental, and healthcare-related variables that contribute to disparities in life expectancy, helping governments and organizations design targeted policies to improve public health. Moreover, understanding these determinants aids in forecasting future trends, assessing the effectiveness of current health interventions, and promoting equitable access to healthcare resources. By analysing these factors through econometric models, we can develop a comprehensive understanding of the complex interplay between economics and health, ultimately contributing to global well-being and development strategies.

You are a newly hired analyst tasked to model national life expectancy worldwide. Assume that the outgoing research officer had started working on the econometric model to assess some of the drivers of life expectancy. Now as an incoming research officer your job is to finish this research. Your variables of interest, which originate form the World Development Indicators (World Bank), for the year 2023 are:

•    Life_exp = Life expectancy at birth, total (years) [SP.DYN.LE00.IN]

•    GPPpc = GDP per capita, PPP (constant 2021 international $) [NY.GDP.PCAP.PP.KD]

•    UnderNourished = Prevalence of undernourishment (% of population) [SN.ITK.DEFC.ZS]

•    DrinkingWater = People using at least basic drinking water services (% of population) [SH.H2O.BASW.ZS]

•    TB= Incidence of tuberculosis (per 100,000 people) [SH.TBS.INCD]

•    Immunization = Immunization, DPT (% of children ages 12-23 months) [SH.IMM.IDPT]

Dependent variable:

Life expectancy at birth, total (years): We would like to estimate the relationship of other factors with this variable. It is defined as the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.

Explanatory variables:

GDP per capita (GDPpc): The richer a country is, some scholars expect higher life expectancy, due to several factors, among others higher hygiene, better access to services etc. This variable is likely to be highly multicollinear with other explanatory variables.

Prevalence of undernourishment (% of population): Undernourishment is expected to be in a negative relationship with life expectancy.

People using at least basic drinking water services (% of population): It is expected that as higher percentage of the population has access to basic drinking water services, life expectancy will increase at an accelerating rate, because the initial benefits from reduced waterborne diseases are amplified by improvements in related factors such as sanitation and healthcare.

Incidence of tuberculosis (per 100,000 people): Higher incidence of tuberculosis directly reduces life expectancy due to increased mortality from the disease and reflects underlying health vulnerabilities that shorten lives.

Immunization, DPT (% of children ages 12-23 months): Immunisation at early ages against diphtheria, pertussis, and tetanus, is a key scientific achievement aimed at reducing childhood mortality. We expect a positive relationship with life expectancy and a high correlation with GDPpc.

All data originate from the World Bank (WDI). Please assess whether the above variables are truly associated with life expectancy, and if yes, how. Answer the following questions:

QUESTIONS:

1) Use  R to  run  the following cross-sectional regression. (Please note the natural logs and construct these in R as needed):

Life_exP = β0  + β1 log(GDPPc) + β2 underNourished + β3 Drinkingwater + β4 log(TB) + β5 Immunization + u    (Equation 1)

a.     Present your regression results in a table below (R output): 4 marks

b.    Interpret the constant (2.5 marks) and its p-value (1.5 marks). 4 marks

c.     Interpret the coefficient on GDP per capita and its p-value (1.5 marks each). 3 marks

d.    Interpret the coefficient on the % of people using at least basic drinking water services and its p- value (1.5 marks each). 3 marks

e.     Interpret the coefficient on Incidence of tuberculosis (per 100,000 people) and its p-value (1.5 marks each). 3 marks

f. Interpret the coefficient Immunization, DPT (% of children ages 12-23 months) and calculate its t-stat. Interpret the calculated t-statistic (1.5 marks each). 3 marks

g.    Interpret the R2 of the regression. 2 marks

h.     Several explanatory variables would be in a multicollinear relationship with each other. Explain perfect and imperfect multicollinearity and present a correlation matrix between the independent variables in Equation 1. 2 marks

2)   Describe each of the Gauss-Markov assumptions and specify if they are likely to hold for the regression in Question 1 or not. 5 marks

3) Run the following regression with a quadratic drinking water term added to the original regression:

Life ExPectancy = β0  + β1 log(GDPPc) + β2 underNourished + β3 Drinkingwater + β4 Drinkingwater2   + β4 log(TB) + β5 Immunization + u      (Equation 2)

a.  Present your regression results in a table below (R output): 3 marks

b.  Is the relationship U-shaped or inverted U shaped? Is this a significant relationship? 2 marks

c.  Calculate the turning point of the quadratic relationship, and please analyse the result. 4 marks

4) Present a functioning R code reproducing the results below (not in a separate file). This is a critical

part of the assignment without which we’ll initiate a plagiarism check. 2 marks

Assignment Total: 40 marks


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图