代做QBUS6320 S1 2025 Assignment 1代写C/C++编程

QBUS6320 S1 2025 Assignment 1

This is an individual assignment. It is worth 10% of your final grade. It consists of three questions. Each question is worth different marks. It is due on Friday 4 April at 11:59pm and must be submitted through Canvas using Turnitin.

The submission will comprise two separate parts:

1.   A typed  report (PDF please) that addresses all questions and contains images all of relevant tables, charts and decision trees within the report. The report must be able to be read as a standalone document.

2.   An Excel file with containing all the original tables, charts and decision trees. The Excel file is provided for backup and corroboration purposes.

Failure to submit both files by the due date will result in late penalties being applied. Additional instructions occur after the questions.

Question 1 (25 marks)

The Australian Institute of Sport (AIS) is considering whether to introduce mandatory drug testing for all athletes. Knowing that drug tests are not completely reliable, they want to use decision tree analysis to see whether the benefits outweigh the costs.

Probabilities:

If an athlete is tested for a particular drug, the test result will either be positive or negative. However, as these tests are not completely accurate some athletes who are drug free test positive (a false positive) and some athletes who are drug users test negative (a false negative). The best data we have available suggests that 8% of all athletes use drugs. 2.5% of all tests on drug free (DF) athletes result in false positives and 7.5% of all tests on drug using athletes result in false negatives.

Monetary Values:

The monetary values are difficult to assess but include the following:

•     The benefit B from correctly identifying a drug user and banning them.

•     The direct cost, C1, of a test.

•     The cost, C2, of violating a non-users privacy by performing the test.

•     The cost C3, of falsely accusing a non-user and banning them.

•     The cost C4, of not identifying a drug user and allowing them to participate.

We measure all benefits and costs relative to C1 (the direct cost of a test). We assign C1 a value  of  -1  to  indicate it represents a cost. All other monetary values are expressed as multiples of C1's magnitude. For example, a value of -2 represents a cost twice as large as the direct testing cost, while a value of +25 represents a benefit 25 times larger than the testing cost. The index values are shown in Table 1.1 on the following page.

Table 1.1

Cost/benefit

Index

C1

-1

C2

-2

C3

-20

C4

-10

B

+25

Questions:

1.   In Excel create two net benefit pay-off tables that map the net benefit of either testing (four different states) or not testing (two different states) against the decision to ban or not ban an athlete.  Include the pay-off tables in your report. Note: the first table should be expressed in index notation (+B, -C1, -C2  etc) while the second table should state the net benefit in numerical terms based on values indicted in table 1.1. For example, if a positive test is obtained for a non-drug user and this athlete is banned, there are three associated costs: Cost of the test (-1), the cost of violating the athlete's privacy (-2) and cost of falsely accusing the athlete (-20). (6 marks)

2.   Calculate the  relevant posterior probabilities. Include any Bayes tables generated in Excel in your report. (4 marks)

3.   Based  on the values  in the net benefit pay-off table and the Bayesian probabilities, create a decision tree using Precision Tree that will help the AIS decide whether they should implement mandatory drug testing. Note: Be careful to avoid double counting the costs (for example, do not include the C1, C2, C3, or C4 costs at multiple decision points if they have already been accounted for in earlier calculations). Include your decision tree in your report. (8 marks)

4.   For the given assumptions around the cost and benefit, outline the best strategy and its net benefit and discuss this solution. (2 marks)

5.   Conduct a brief sensitivity analysis giving reasons why you might change the relative index values. Discuss how this might impact the original solution. (5 marks)

Question 2 (35 marks)

The University of Sydney s procurement office has invited Intelligent Computing (iC) to tender on a new contract. The contract calls for the supply of 200 generic desktop computers and associated accessories which will be used for digital in-place exams. All vendors must fulfil the order within 6 weeks of contract award.

Despite the urgency the contract specifications are generic and so the university has informed all bidders that the low bid will win the contract. iC believes that the cost of preparing the bid will be $10,000 and the cost of supplying the computers will be $190,000.

The bids are sealed, so iC has no information about the value of the bids their competitors will submit. However, in the last 12 months iC has managed to poach several key employees away from vendors who are competing for the contract and so iC has a good understanding of how the competitors may behave. In summary iC believes that the size and probability of a low competitor bid will be:

Table 2.1

Low Bid

Probability

Less than $230,000

0.20

Between $230,000 - $240,000

0.40

Between $240,000 - $250,000

0.30

More than $250,000

0.10

In addition, because of supply chain constraints, iC think there is a 30% chance there will be no rival bid.  Further assume iC s bid will never equal any competitor s bid.

Part A (20 marks)

A.1.             Based on this  information create a pay-off table in excel which outlines iC s

most logical bid prices given potential competitor bid options. Include relevant probabilities. (8 marks)

A.2.             Based on the pay-off table and any other relevant information use Precision

Tree to create a decision tree which sets out the problem. Include an image of the whole tree in your report. (10 marks)

A.3.             Using this decision tree, indicate the strategy that maximises EMV for iC. What

is that optimum value? (2 marks)

Part B (15 marks)

Use the sensitivity analysis function on the Precision Tree tool bar to vary the following inputs:

Bid Preparation Costs: +/-10% in 1% increments

Supply Cost: +/-10% in 1% increments

•     No  competing  bid  percentage:  A  minimum  of  0%  to  a  maximum  of  60%  in  5% increments

B.1.             Run a one-way sensitivity analysis on the entire decision tree model selecting

one of either the tornado graph or the spider graph. For the tornado graph: Show how each variable impacts the expected value. For the spider graph: Display variable values on the x-axis and expected value on the y-axis. Include an image of the chosen graph in your report and provide a short interpretation of the graph. (5 marks)

B.2.             Run a second one-way sensitivity analysis on the bid value decision node (not

the entire tree) and create a strategy region graph. Include an image of the graph - that  plots the probability of  no competing bids against  Expected Value -  in your report along with a short interpretation of the graph. (5 marks)

B.3.             Run a two-way sensitivity analysis on the bid value decision node and create

another strategy region graph including an image of the graph in your report along with a short interpretation. (5 marks)

Note: Precision Tree s sensitivity functionality has not been explicitly covered in lectures.  Part B provides an opportunity for students to explore this for themselves and differentiate the quality of their submissions based on their responses.

Question 3 (40 marks)

The following table outlines the potential pay-offs for three separate investments.

Table 3.1

Investment A

Investment B

Investment C

Pay-off

($'000)

Probability

($'000)

Probability

($'000)

Probability

1

18.0

10%

27.0

20%

18.0

20%

2

36.0

30%

45.0

30%

45.0

40%

3

61.0

30%

61.0

20%

72.0

20%

4

90.0

30%

99.0

30%

90.0

20%

Write a report for potential investors which ranks the three investments in terms of their attractiveness. Your report should be approximately 500 words. All diagrams and tables used to support your analysis should be generated in Excel using Precision Tree.

As you do not know the individual risk preferences of investors you should consider all risk types.

Write a report for potential investors which ranks the three investments in terms of their attractiveness. Your report should be approximately 500 words. All tables and risk profiles used to support your analysis should be generated in Excel using Precision Tree. As you do not know the individual risk preferences of investors, you might wish to consider multiple risk perspectives:

- Expected monetary value (EMV)

- Risk measures (variance, standard deviation)

- Risk attitudes (risk-neutral, risk-averse, risk-seeking)

- Potential for extreme outcomes (downside risk)

- Dominance

Other Instructions

Word count

1,200 words +/-10% excluding tables, decision trees and charts and references. Any words beyond 1,320 will not be marked. Submissions below 1,080 words may be penalised.

Style

This is a business report not an essay. The report should:

-     Have a suitable cover page.

-     Be divided into 3 distinct sections.

-    The text should be concise. Using bullet points is acceptable.

-     Be professionally and logically laid out with good grammar and spelling.

-     Marks will be deducted for submissions that do not meet these requirements.

Precision Tree

If Precision Tree is not used where required ,the best mark possible will be 50% of the available marks.

Rubric

There is general rubric relating to this assignment in the Assignment 1 Canvas module where this brief is located that provides detailed information regarding the quality expectations of the submission.

Late penalties

Reports submitted after the due date will incur a late penalty of 5% per day or part thereof. Reports more than 10 days late will not receive a mark.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图