代写MECH3110 Mechanical Design 1代写Java编程

MECH3110 Mechanical Design 1

Fasteners Assignment Guidelines (20%)

Type

Individual assessment

Submission                      Submit your .pdf file via Moodle.

Name your files in the following format: zID_FastenersAssignment.pdf E.g., z5160675_FastenersAssignment.pdf

Due date

Week 8 – Friday 11:55 pm

Weighting

20 %

Marking

Your file submission will  be  marked  by  course staff. The  marks will be returned two weeks after the assessment deadline.

Background

In December 2024, Darson visited Christchurch, New Zealand, to present at the Australasian Association for Engineering Education (AAEE) Annual Conference. During an evening stroll, he came across a local landmark—the Christchurch Swings (#chchswing)—a popular installation that integrates large beams and suspended swings, providing both aesthetic appeal and recreational use (Figure 1(a)). Upon closer inspection, he noticed that the beams were connected by fasteners, forming the key structural joints of the installation, as shown in Figure 1(b).

Christchurch is well known for its seismic activity, having experienced several significant earthquakes in recent history. In such an environment, fail-safe design is critical. Fail-safe design refers to engineering strategies that ensure structures remain safe and functional even when components fail. This approach is essential in earthquake-prone regions to prevent catastrophic failures and protect public safety.

Fasteners play a critical role in the integrity of any structure, especially in load-bearing applications like the #chchswing. If a fastener joint fails, fail-safe mechanisms—such as redundancy in the design—must ensure that the structure does not collapse. In this assignment, you will apply your knowledge of fasteners to design the joint system that secures the beams of the #chchswing while ensuring fail-safe principles are incorporated to enhance structural safety.

Your Tasks

In this assignment, your objective is to design a fastener joint for connecting the steel beams of #chchswing, such that the whole structure will not collapse even if another fastener joint fails. The joint must ensure safety, durability, and appropriate load-bearing capacity with a reasonable factor of safety. In this assignment, we will focus on the single swing at the front only, not the twin swing at the back of Figure 1(a).

Remember, your goal is NOT to find the most accurate answer to an engineering mechanics question. Your goal is to come up with a practical and conservative design for the fastener joint to ensure safety.

Figure 1 (a) Darson on #chchswing (single swing at the front). (b) The frame of #chchswing is held together by fasteners. (c) An example of how this public structure can be abused (the twin swing at the back).

Figure 2 (a) Dimension of the single #chchswing at the front. (b) the approximate dimension of the beam cross-section. The exact dimension of this I beam depends on your selection.

Specifically, you are to:

1.   Design the location of the hanger/chains of the swing on Beam BC, ensuring the person is positioned roughly at the centre of the frame. for optimal stability and aesthetics   (i.e. instaworthy).

2.   Select an I-beam from a supplier’s catalogue for the structure. The width and height of the beam cross-section are approximately 250 mm based on visual inspection. Justification of beam selection is outside the scope of this assignment.

3.   Pick a joint (Joint B or Joint C) to analyse. In reality, all joints should be analysed, but for this assignment, focusing on one joint is sufficient.

4.   Design the placement, number of fasteners, and spacing between the fasteners at your selected joint (refer to Figure 1(b)).

5.  Adopt a fail-safe design principle and analyse the safety of your selected joint assuming the other joint has failed due to seismic conditions:

a.   If you choose to analyse Joint B, assume Joint C has failed, and Beam CD has collapsed, leaving only structure ABC under loading.

b.   If you choose Joint C, assume Joint B has failed, and Beam AB is no longer supporting structure BCDE.

6.   Construct a free-body diagram of Beam BC and calculate the normal force, bending moment, and shear force at your selected joint.

a.   Make conservative assumptions regarding loading conditions. Refer to Figure 1 (c).

b.   Will all fasteners at this joint carry the same load? If not, how can we ensure our design is conservative?

7.   Develop a preliminary design of the joint and select a set of preliminary fasteners from a supplier.

8.   Construct the spring model of the joints and determine spring rates, k.

9.   Determine the pretension force for the fasteners.

10. Produce the spring rate diagram for the fasteners.

11. Conduct a failure analysis of the fasteners, including

a.  the factor of safety against fastener yielding (load factor nL).

b.  the factor of safety against joint separation n0 .

c.   Examination  of the  possibility  of  shear failure. Consider all  modes of shear failure. Discuss the role of pre-tension during your shear failure analysis.

12. Discuss your results and conclude whether your proposed design is suitable for the application. If not, re-iterate.

13. For your final design, specify the size, property class, length, and pre-load for the fasteners, as well as the diameter, depth, and threading requirements for the holes required.

Important tips:

1.   The steps above are just suggestions to help guide the design process. They don't have to be followed in a rigid, step-by-step manner.

2.  This assignment is designed to be a practical engineering exercise that emphasises conservative design principles over exact numerical precision.

3.   Feel free to use computer tools, such as the “measure” function in SOLIDWORKS, to help you analyse the geometry, weight, and centroid of the structure.

4.   Make conservative assumptions and justify them wherever needed.

Deliverable

You are tasked with the responsibility of preparing a comprehensive report that outlines the outcomes of your investigation. The report should contain the analysis and decision-making  process.  This professionally formatted document will concisely summarise your findings and provide all the necessary engineering documentation required to verify your conclusions. The report will have, at a minimum, the following sections:

•    Title Page

•    Executive Summary

Table of Contents

Introduction

•    Main Body

•    Conclusion

•    Bibliography

•    Appendices

•     Design calculations.

•    Catalogue excerpts.

•     Engineering drawings,

Design tables and charts from the textbook, etc.

A detailed guide on how to write a design report can be found in “Project Report Guidelines” on Moodle (the guidelines for the project report of your Gearbox Prototyping Assessment).

Formatting

Formal language: Engineering reports should be written in third-person narrative. Avoid the use of informal and personal language, such as “I think … .” and “We did … .” . Instead, it should be “Something was performed to … ”.

Figures and tables: Wherever possible, you should use figures and tables to convey information. It is significantly easier to refer to a figure or table than to read half a page trying to describe something. However, whenever you include figures and tables, you MUST always introduce and refer to them. Never put in a figure/table without explaining what it is and its importance to the analysis using text. A small figure is a useless figure. Ensure that the information is concise and easily read. All figures and tables must have proper captions.

o For figures, the caption should be below the images.

o For tables, the caption should be above the table.

o Proper references should be added to the captions of figures and/or tables if necessary.

Page limit: Your report must not exceed a maximum of 15 pages, from the introduction to the conclusion sections. Your report should only be as long as required to convey all the information needed concisely. Do not write filler or irrelevant material, as it detracts from the professional tone of your report. A short, concise, to-the-point report that details everything you need and nothing more is a joy to read. Marks for this report will be awarded on quality and not quantity of the work.

Multi-level headings are standard practice in engineering reports and assist in creating the

table of contents. Please be sensible with the number of levels, especially in a short report like this one. Three levels should be ample, e.g., “2.1.3 Preliminary Fastener Selection” .

Page numbering: The title page should not have a page number, but everything after that

should. All page numbering before the introduction should be in Roman numerals (i.e. i, ii, iii, iv, etc.), with the numbering switching to numbers at the Introduction (the introduction section is  on page 1).

Referencing: You may choose any referencing system (e.g., Harvard, IEEE, etc.) you like, but please ensure all information sources are referred to, and the referencing style is consistent throughout the report.

File Submission

The assignment is due at 11:55 pm on Friday, Week 8. You must submit your .pdf file to the Moodle submission box before this time.   During submission, name your files in the following format: zID_FastenersAssignment.pdf. E.g., z5160675_FastenersAssignment.pdf.

Work submitted late without an approved extension is subject to a late penalty of five percent (5%) of the maximum mark possible for that assessment item, per calendar day. The late penalty is applied per calendar day (including weekends and public holidays) that the assessment is overdue. There is no pro-rata of the late penalty for submissions made part way through a day. Work submitted after five days (120 hours) will not be accepted and a mark of zero will be awarded.

For example:

Your course has an assessment task worth a total of 100 marks (Max Possible Mark)

You submit the assessment on time and you get 60/100 (Awarded Mark)

•    You submit the assessment 1 day late and the late penalty of 5% per day is applied (5% deducted/day from maximum possible mark for that assessment item)

Your adjusted final score is 55/100.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图