代写ECN5007 Applied Econometrics and Research Methods TIME SERIES COURSEWORK 2025代做Python程序

ECN5007 Applied Econometrics and Research Methods

TIME SERIES COURSEWORK 2025

This is the third and final assignment for ECN5007 and represents 20% of the final module grade.

It is an individual assessment.

There is one question which has multiple parts.

ATTEMPT ALL PARTS OF THE QUESTION.

There are 25 Marks in total.

The mark for each part of the question is indicated in bold.

The data file‘TS_CWK_25.xlsx’is provided within the time series assessment folder of the ECN5007 portal

EACH STUDENT HAS THEIR OWN DATASET.  PLEASE REFER TO THE FILE ‘Dataset Key’ IN ORDER TO IDENTIFY YOUR PERSONAL DATASET.  This file can be found within the time series assessment folder on the ECN5007 portal.

If you do not use the data set assigned to you, you will receive NO MARKS for the assessment.

Please make sure you put your STUDENT ID NUMBER and corresponding DATASET NUMBER on the cover sheet of your assessment submission.

MARKING CRITERIA

o Appropriate use of econometric methods

o Providing correct solutions the questions.

o Providing clear interpretations for your analyses 一 limited credit will be given for output without interpretation or comment.

There is no specific word limit for the piece.   Most questions require two or three sentences of explanation.

You will need to use GRETL for this assignment  一  a copy is available from the ECN5007 DLE site.

Please present all GRETL output within your answer rather than as appendices.

Submit ONLINE to the ECN5007 DLE site on or before 3pm Thursday 1 May 2025

Late work will receive no marks.

Marks will be returned within 20 working days of receipt.

Please refer to the Module Handbook, in particular, Sections 9-16 for further information on for example, academic offences, extenuating circumstances etc.

ASSESSMENT QUESTION

The file‘TS_CWK_25.xlsx’shows quarterly data for a hypothetical country’s real GDP (£bn, GDP) and Unemployment rate (%, U) from 2000 Q1 to 2024 Q4.   Both series have been seasonally adjusted.  PLEASE MAKE SURE YOU USE THE DATA SET THAT HAS BEEN ASSIGNED TO YOU.

a. Make any transformation(s) necessary to the variables so that changes can be interpreted in percentage terms.  State what transformation(s) you have made. (1 MARK)

b. Test the transformed variables for stationarity using the Augmented Dickey- Fuller (ADF) test with 4 AR lags and interpret the test results. Perform any further transformations and tests necessary to demonstrate that stationarity in both variables has been achieved. (3 MARKS)

(Note:  you should retain any transformations made in part a and b throughout the remainder of question one)

c. Model GDP as a function of U using 4 distributed lags.  Test back the lags of this model using the 5% significance level. (2 MARKS)

d. Interpret  the value of R-squared and  its  statistical  significance  for the final model of part c. (1 MARK)

e. Interpret the individual model coefficients and their statistical significance for the final model in part c. (2 MARKS)

f. Show how you calculate the long-run elasticity of GDP with respect to U in the final model estimated in part c.  Interpret the calculated value. (2 MARKS)

g. Test the final model in part c for first-order autocorrelation.   Comment on whether the model is adequately specified. (1 MARK)

h. Estimate an Auto Regressive Distributed Lag (ARDL) model with one AR lag and two DL lag.  Repeat steps fand g for this model i.e. show how you calculate the long-run elasticity and test for first order autocorrelation.   Make sure you interpret the elasticity and the autocorrelation test. (3 MARKS)

i. Explain briefly what is meant by the term‘structural break’in the context of a time series econometric analysis.  Test whether there is a structural break at any point in the model estimated in h. (2 MARKS)

j. Use  the Vector Autoregressive  (VAR)  lag  selection  tool to  determine the optimal lag structure for a VAR model between GDP and U, selecting 4 as the maximal lag structure. (Note - this tool is found under Model > Multivariate time series > VAR Lag selection) (1 MARK)

k. Based on this evidence, estimate an appropriate VAR.  Comment on the nature of  Granger  Causality  between  the variables.     Does  the  implied  Granger Causality make‘economic sense’?  Explain. (3 MARKS)

l. Use the VAR  model  estimated  in j to forecast GDP and U for 2025 Q1 through to 2025 Q4.

YOU MUST SHOW THE WORKINGS OF YOUR FORECASTS CLEARLY TO RECEIVE CREDIT.

NOTE the forecasts of GDP and U should ultimately be presented in terms of their respective units in levels. (3 MARKS)

m. Considering the modelling approaches of parts c, h and j, which approach do you prefer and why? (1 MARK)





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图