代写SEMTM0016 Artificial Intelligence for Robotics Part C代做Python编程

SEMTM0016 Artificial Intelligence for Robotics

SEMTM0016 Coursework - Part C

Task Overview

In this part of the coursework, you are being assessed on your ability to:

•  Discuss and explain for which problems/tasks an approach and algorithm is suitable and why.

• Implement and apply a range of algorithms to a given  “real-world” scenario, including poten- tially noisy, unstructured or unreliable datasets.

•  Evaluate and appraise the performance of a range of algorithms.

Task Description

Machine learning in robotics has many different approaches and algorithms available which can be applied to various problems. Therefore, it is a key skill to be able to select the appropriate approach and algorithm, to configure it appropriately, and to evaluate the performance.  This assessment is an opportunity for you to demonstrate this capability.

You are the mighty HeroBot traversing the MazeDungeon where you could encounter many differ- ent entitities. Herobot’s overall goal is to navigate the MazeDungeon and reach the exit as efficiently as possible.  However, to achieve this overall goal there are various tasks Herobot will need to do, such as distinguishing between friend and foe or deciding what action to take upon meeting an enemy in the maze.

The following will help you in your quest and can be downloaded from Blackboard or via the GitHub link:

• dungeon images colour80. zip : This dataset is comprised of 17,842 80x80 pixel RGB colour images of entities that could be found within the dungeon.  Each entity is labelled with a particular ‘race’ and there are five races in total.

• dungeon sensorstats partC . csv :  This  dataset gives sensor and stats information about 10,000 example entities that may reside within the dungeon.

• DungeonMazeWorld: The base reinforcement learning environment for the maze solving grid- world problem.

Given the datasets and base simulation environment provided, in this part of the coursework you are now expected to identify and solve three tasks demonstrating each of the three machine learning approaches (i.e. one task per approach);

•  a supervised learning approach,

•  an unsupervised learning approach, and,

•  a reinforcement learning approach.

The tasks cannot be exactly the same as those covered in Part A and B, but must be different in some way.  For example, for a supervised learning task you might use classification on the image dataset again but no longer restricted to two classes.  If you have any doubts or questions, please contact a member of the teaching staff.

You should look to evidence and demonstrate your critical thinking through the written commu- nication of your approaches.  You must produce a report which effectively communicates, for each task:

•  a description of the proposed task, your choice of algorithm to solve it and why that algorithm is appropriate.

•  a description of how you implemented the algorithm, including any pre-processing performed on the datasets and any adaptations made to the base simulation environment.

• justifications for any design choices, which should be supported with evidence such as tables and plots where appropriate.

•  an evaluation and critical appraisal of the performance of the algorithm, using suitable metrics and comparisons to baselines where appropriate.

Report

Your report should be up to but no longer than eight pages, 11 or 12pt font is sufficient.

Your report must be submitted as a pdf and should be prepared either in LaTeX (overleaf is a good approach), MS Word, or a similar text editor to prepare the report and submit it as a pdf document.

Your code will not be marked for elegance, but it should run correctly; it is expected you will use Python. Do not include screenshots of graphs, they should be imported directly; resize them to the correct size before importing them, if the labels are tiny the graphs will not be marked.  Make sure figure captions are descriptive, it is better to have some overlap between figure captions and the main text than to have figure captions that are not reasonably self-contained.

Avoid code snippets in the report unless that feels like the best way to illustrate some subtle aspect of an algorithm; do always though consider a mathematical description if possible.  You will be asked to submit your code and it will be tested to make sure it works and matches your report. It will not, however, be marked itself for quality.

Assessment Criteria

Your report will be assessed with consideration to the following unit criteria and general University marking criteria and scales. Feedback will be provided addresing the same criteria where appropri- ate.

Criteria

Weight

Task and algorithm choice

- Identify and describe three relevant tasks.

- Realistic and challenging scope of tasks.

- Approach and algorithm choice is suitable for each task.

- Suitable justification given for choice of approach and algorithm.

0.2

Implementation

- All algorithms implemented correctly.

- Sufficient level of detail in documentation for reproducibility of work.

0.2

Design choices

- Evidence of critical thinking/reasoning.

- All design choices are fully discussed and justified.

- Appropriate methods used to select any hyperparameters where applicable.

- Justifications are supported by suitable evidence where appropriate.

0.25

Evaluation and self-reflection

- Choices of evaluation metrics/method are appropriate, discussed, and justi- fied.

- Evaluation includes comparison to suitable baselines where appropriate.

- Work completed is critically appraised.

- Limitations or shortcomings in relation to original task are acknowledged and discussed.

- Realistic recommendations given for future work.

0.25

Report presentation

- Report has a logical structure and clarity of presentation.

- Excellent quality of writing, spelling, grammar.

- Tables, diagrams and figures are readible, captioned and referenced in main body of text.

- Use of English is clear and readible.

- Communication is appropriate for audience.

0.1




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图