代写25883 AI-driven Compliance, Anomaly and Fraud Detection 2025代写留学生Python程序

25883 AI-driven Compliance, Anomaly and Fraud Detection   2025

Assessment Task 1

Submission

This assessment must be completed in a group of up to two students. At the top of your Jupyter Notebook, include the full names and student IDs of both group members. Only one submission per group is required — please ensure that only one member uploads the assignment, not both.

Please submit your answers by midnight (11:59pm) on Friday, 11th April 2025 via Canvas only. A late penalty of 5% per day for submissions up to 7 calendar days late will be subtracted from the mark (a maximum of 35% penalty). Work submitted after 7 calendar days (on the 8th day or later) will not be marked and the assessment will attract a zero (0) mark.

Your submission should constitute a single Jupyter Notebook with your code, visualisations, and explanations   summarising  your   methodology,   findings,   and   insights   using   Jupyter’s   markup functionality. Clearly identify the parts of the project by sectioning (e.g., using markup section # Question 1, # Question 2, etc...).

You do not need to upload any data files to Canvas. Your code should either:

•    Download data directly from online sources (e.g., using yfinance), or

•    Read from the external data files provided (e.g., the earnings call transcripts available on the subject GitHub page).

Make sure your code clearly shows how the data is loaded, so it can be run and reproduced without manual file uploads. Note: Code that does not compile or produces errors during execution may result in a significant loss of marks, so be sure to test your notebook before submission.

Using GenAIto Support Your Coding

You are encouraged to use Generative AI tools (such as ChatGPT, Claude, or GitHub Copilot) to assist with  your  coding   in  this  assignment.  These  tools  can   help   explain  unfamiliar  code,  suggest improvements, or help troubleshoot errors. You may also copy and paste the sample code provided in class or on GitHub into a GenAI tool to better understand how it works or adapt it to your own analysis.

Best practices for using GenAI include:

•    Ask specific, well-formed questions (e.g., "How do  I detect anomalies in time series using Isolation Forest?")

•    Use GenAI to clarify errors or unfamiliar code blocks, rather than blindly copying outputs

•    Test and validate any code suggestions before integrating them into your notebook

Always understand and explain the code you submit—your ability to interpret and justify your work will be part of your assessment. Remember, GenAI is a powerful support tool, not a replacement for your own reasoning, learning, and interpretation.

Marking

The final page of this document contains the assessment rubric, which outlines how your work will be evaluated. Submissions will be ranked, with the strongest projects placed at the top of the pile. This means your grade is relative to the quality and creativity of other submissions — so aim high and demonstrate your best work.

Good luck — I’m looking forward to seeing your ideas in action!

Question 1: Anomaly Detection in Financial Time Series

Objective: Your task is to design and implement an anomaly detection approach using Python and historical financial time-series data retrieved from the yfinance library. Focus on price, returns, and volume series, or any derived financial indicators (e.g., volatility). Your goal is to uncover unusual or abnormal patterns, such as structural breaks, outliers, regime shifts, or behaviour inconsistent with typical market dynamics.

This is an open-ended empirical task, and you are encouraged to be innovative. There is no single correct approach —  submissions  will  be  ranked  relative  to  peers  or  peer  groups  based  on  originality, correctness, insights, and overall quality of presentation.

Instructions

•    Use the yfinance package to download time-series data for GameStop from 1 Jan 2020 to 1 Jan 2025.

•    Define  what  constitutes  an  “anomaly” in your context (e.g., price spikes, return outliers, structural breaks, volatility bursts, etc).

•    Select and apply appropriate anomaly detection techniques in Python, such as:

o Statistical methods (e.g., z-score, rolling quantiles, change-point detection)

o Clustering-based or distance-based approaches (e.g., k-means, DBSCAN)

o  Machine learning models (e.g., Isolation Forest, One-Class SVM)

•    Repeat the steps above for another asset of your choosing (e.g., stocks, indices, ETFs).

•    Explain and justify your method selection and implementation.

•    Visualise and interpret the anomalies you detect. What do they reveal? Are they associated with market events or structural changes?

Question 2: NLP-based Analysis of Financial Text Data

Objective: Your task is to design and implement a  Natural Language Processing (NLP) workflow to extract and analyse insights from a set of earnings call transcripts. The goal is to automate the summary of the text, detect patterns and irregularities, or strategic signals embedded in financial language, and explore their possible links to compliance issues, market impact, or irregular firm behaviour.

This is an open-ended and exploratory exercise — you are free to define your own approach, provided it is grounded in appropriate NLP methodology and produces insightful, reproducible results. Submissions will be ranked relative to peers or peer groups based on originality, correctness, insights, and overall clarity of presentation.

Instructions

•    You are provided with a sample of earnings call transcripts in the file:

o   \data\EarningsCallTranscript_SingleCompany.txt  (available  via  the  subject GitHub page).

o The transcript. consists of two parts: formal remarks prepared by the senior team and highly scripted and the Q&A section, which is often unexpected and can be surprising to organisers.

•    Define a problem or pattern of interest relevant to the objective. Example questions you might explore:

o Do you detect certain linguistic signals or sentiment shifts between scripted and Q&A sections?

o  Is there any certain topic avoidance?

o Can topics, tone, or complexity of language signal risk, manipulation, or stress?

•    Apply appropriate NLP techniques to extract and analyse insights. These may include:

o Text cleaning, tokenisation, and vectorisation (e.g., TF-IDF, embeddings)

o Sentiment analysis (e.g., lexicon-based or transformer models)

o Topic modelling (e.g., BERTopic, LDA)

o Semantic similarity and clustering

•    Present your findings using clear visualisations and articulate the value of the insights.

Empirical Assignment Rubric

Criteria                     Excellent (Top Quartile)          Proficient (Second

Quartile)

Satisfactory (Third Quartile)

Needs Improvement (Bottom Quartile)

1. Originality and

Innovative and well-reasoned

Sound and appropriate

Approach is standard or

Weak or unclear approach.

Soundness of

approach. Clearly defines the

approach. Clear problem

partially justified. Problem

Poor alignment between

Approach

problem, justifies chosen

methods, and may extend

beyond taught material.

Demonstrates strong

understanding of the data and domain.

definition with reasonable method choices. Mostly

builds on techniques

taught in class. Methods    are appropriate with some depth or customisation.

framing may be vague or

overly reliant on basic

techniques without clear adaptation. Methods are

appropriate but lack depth or customisation.

problem and method. Lacks justification or shows

misunderstanding of key concepts.

2. Correctness and

Code is correct, well-

Code is mostly correct

Code runs but contains

Code is incorrect, does not

Clarity of

structured, readable, and fully

and functional with minor

inefficiencies or

run properly, or lacks clear

Implementation

reproducible. Methods are

implemented as intended

with good use of programming practices.

issues. Implementation is understandable and

logically structured.

inconsistencies. Some  parts may be difficult to follow or not well

explained.

structure and

documentation. Major   conceptual or technical errors present.

3. Insightfulness of

Provides rich, critical analysis

Interprets results

Basic interpretation of

Findings are poorly

Findings

of the results. Interprets

findings clearly and connects them to broader financial or   compliance context.

Demonstrates depth of thought.

appropriately. Connects findings to context but

lacks depth in critical reflection.

results. Insights are

shallow or descriptive

with minimal contextual linkage.

interpreted or missing.

Analysis lacks relevance, depth, or rigour.

4. Coherence and

Discourse and notebook are

Structure is mostly clear

Structure is uneven or

Poorly organised or hard to

Quality of

well-organised, visually clear,

and logical. Visuals are

unclear. Visuals may be

follow. Visuals missing,

Presentation

and easy to follow.

Visualisations are well-

designed and support the narrative effectively.

helpful but could be more polished or better

integrated.

present but lack clarity, context, or labelling.

confusing, or irrelevant.

Overall presentation quality is low.

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图