代写Economics 120B Econometrics, Winter 2025代做Python编程

Economics 120B

Econometrics, Winter 2025


Description: This course prepares students for empirical analysis in an academic or business setting. It covers the fundamentals of regression, including estimation and hypothesis testing in a univariate and multivariate framework.  It presents ideas using the “potential outcomes” framework and makes the important distinction between prediction and causality. The course discusses reasons why estimators may be biased or inconsistent, and how both randomized experiments and natural experiments can be used to obtain causal estimates.

The material can be difficult and the workload substantial, particularly for those who find math courses challenging.  However, your payoff for all this work is a set of skills, analytical tools, and ways of thinking about data that are extremely useful and in high demand in the marketplace.

Important Dates and Times:

Class: Tuesdays and Thursdays, 9:30 – 10:50 am (location: MOS 0113) 

Midterm: Tuesday, February 11 in class

Final: Saturday, March 15, 3:00 – 6:00 pm

Class: Tuesdays and Thursdays, 11:00 – 12:20 pm (location: PODEM 1A20) 

Midterm: Tuesday, February 11 in class

Final: Saturday, March 15, 3:00 – 6:00 pm

Class will be held in person and attendance is strongly encouraged. Class lectures will not be recorded; if you miss a class, the best option is to find a classmate who can share notes and fill you in on what you missed and/or to visit a TA during office hours for extra help. We will also have some in-class “bonus” quizzes which can only be completed by attending class.

Instructor:  Gordon Dahl

Office hours: Tuesdays, 12:30 – 1:30 pm

Location: Atkinson Hall 6320 email: eco120b@gmail.com

(please do not use the email built into canvas, as I do not monitor it)

Feel free to stop by in person so that I can get to know you.  As these are large classes, I will prioritize speaking with students about things which the TAs cannot help with, such as strategies to do better in the course, unusual circumstances, graduate school options, etc. In other words, while I am happy to talk about homework, if there are any students needing to talk about other things, then they will jump to the front of the queue.

Graduate Teaching Assistants: Maddison Erbabian, Kurtis Gilliat, Alec Hoover, Haoyu Wei Undergraduate Instructional Assistants: Varun Naik, Ryan Zhao

The graduate TAs are a valuable resource, and I encourage you to take advantage of their help during their office hours. This is an excellent resource for help in understanding course content, homework assignments, and the Stata programming package.  If you have a general question about the class, rather than a specific question about content, homework, or Stata (which you should ask about during TA office hours), please use the class email eco120b@gmail.com. A graduate TA will monitor this email, and forward anything which they cannot answer to me.


Please do not use the email built into canvas, as it will not be monitored.

The undergraduate assistants are also a great resource.  They will also be holding office hours and I encourage you to take advantage of their help.  They have recently taken the class, and so have a first-hand perspective about the types of questions you might have and are well-prepared to answer homework and class questions.

Details on the office hours of the TAs and UIAs will be announced in Canvas. The current plan is to have at least some, and perhaps all, office hours via zoom.  TA and UIA office hours will    start on week two of the quarter unless otherwise noted.

Review Sessions: There will be review sessions each week which will be conducted by a graduate TA.

The weekly review sessions will normally focus on helping students get started on the homework, but will also occasionally review topics covered in class and help prepare for exams. You are welcome to attend any of the review sessions, regardless of which one you are registered for. Further details on review sessions will be provided during the first week of class and announced on Canvas.

Class Web Site:  canvas.ucsd.edu

The class web site contains the syllabus, lecture notes, homework assignments, and class announcements.  You should check it regularly as you are responsible for any information posted there in addition to any announcements made in class.

Text and Online Videos:  For this course we will be using both a textbook and online videos.  The two

are not always substitutes for each other.  For some class topics the videos are the better resource, while for others the textbook is better.  I will make sure to point students to the most appropriate   resource during class lectures.

Text: The textbook is the Pearson eBook Introduction to Econometrics, 4th Edition by Stock and

Watson. The eBook access for the course is being delivered through Follett’s BryteWave RedShelf as a link on Canvas.

The UCSD Bookstore has not provided information this year on specific details on how to opt out of purchasing this ebook.  If you have any questions about billing, etc., you can try contacting

textbooks@ucsd.edu.

EVH Videos: We will also be using the Econometrics Video Handbook (EVH), a series of videos developed and maintained by by Professors Brendan Beare, Eli Berman, Graham Elliot, Gordon Dahl, Yixiao Sun, Kaspar Wuthrich, Joel Watson, and Melissa Famulari of the University of

California San Diego, in conjunction with IT Services Educational Technology at UC San Diego

and funded by an Innovative Learning Technology Initiative grant from the Office of the   President of the University of California (Melissa Famulari and Joel Watson, Co-Principal Investigators).

You can access the EVH as a module on the class web page.  There is no charge to access these videos as part of this course.  Some of these videos are useful to review concepts you learned in ECON 120A, and some are useful for the material in ECON 120B.

Software:  Part of the course involves learning to use a software package called Stata.  Stata is essential for problem sets, so you need to be able to access Stata.

UCSD maintains a site license so that students can download and install Stata on their own computer for free.  We will provide details on how to do this as a separate announcement on Canvas as soon as possible.

You can also lease a copy of Stata to install on your own computer for a small fee (but there is no particular reason to do this since UCSD has a free site license):

https://www.stata.com/order/new/edu/profplus/student-pricing/

If you would like a book to help you learn Stata, a good suggestion is A Gentle Introduction to

Stata, Revised Sixth Edition, by Acock.  However, this book is not required for the course.  There are also many online sites devoted to helping individuals learn Stata.  For a list, see:

https://www.stata.com/links/resources-for-learning-stata/

Homework:  Homework is an integral part of this course, because the best way to learn econometrics is to do it.  I will periodically assign problem sets throughout the quarter.  These assignments will  be posted on the web, and it is your responsibility to check the class web page regularly.

Homework assignments will generally be due about 6 days later.

Your homework needs to be turned in on Canvas before midnight  (i.e., by 11:59 pm) on the due date. Neither late nor emailed homework will not be accepted.  You must scan your answers into a single pdf file and upload the file to Canvas.

You are allowed to miss one homework without penalty, as I will drop the lowest score before calculating the homework portion of your grade.  The tradeoff for this benefit is that I will be strict about not accepting late homework.

Homework will be graded on a two-point scale.  A score of 1 will be given to homework which has made substantial progress, but is incomplete.  A score of 2 will be given to homework which attempts to answer all of the assigned problems, including any Stata questions.

Students can work together on problem sets, although solutions must be written up and handed in separately (including any Stata output, which should part of the pdf file you upload onto Canvas  when turning in your homework).  It is a good idea to attempt the problems on your own before meeting with a group.  While you can collaborate with others, any homework you turn in must represent your own work.

Solution keys to the homework will be posted on the class web page.  It is a good idea to check your answers versus the solution key so that you can figure out which questions you need to understand better.

Tests:   There will be a midterm and a final exam.  You must take both the midterm and the final exam at the scheduled time for the class you are registered for (see dates and times listed earlier in the syllabus).  There will be no make-up exams, and any conflicts or emergencies should be approved by me in advance of the exams.  In case of illness or accident at the time of the midterm with proper documentation from, for example, a doctor – the final will be weighted 90%. Details on the administration of the exams will be discussed in class.

Bonus Quizzes:  There will be between 5 to 7 “bonus” quizzes spread throughout the quarter.  The dates of these quizzes will not be announced in advance.  These are short quizzes, where you will get   full credit for taking the quiz, even if you do not get the answer correct.  You will need to bring your phone to class to complete the quiz, and you must be physically present in the class you are registered for to take the quiz.  There are no make-up bonus quizzes. The way these bonus quizzes work is that for every bonus quiz you complete, your final exam will count for 1% less, and instead you will get a full 1% towards your course grade.

Grades:  The following weights will be used to determine your course grade: Homework: 15%

Midterm exam: 40%

Final exam: 38 to 45% (depending on how many bonus quizzes are completed)  Bonus quizzes: 0 to 7% (depending on how many bonus quizzes are completed)

Grading Policy:  If you think a mistake was made in grading your exam, you may ask for a regrade.  You should submit your regrade request via Canvas within 7 days after exam scores are posted.  Note   that unless your answer is fully correct, the assignment of partial credit is a matter of judgment, and we are unlikely to change your grade since we want to treat all class members fairly.  From past experience, most regrade requests do not result in a grade change.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图