代写Credit Risk Group Project代写留学生Python程序

Credit Risk Group Project

As part of this project,you will need to analyse a portfolio of loans with CreditMetrics.Portfolio details are given at the end of this note.You should assume that the analysis is conducted on 21st November 2023.All the data you need to collect (see below)will have to be consistent with such date.

Tasks:

1.Find model inputs. These are:

1.1.Daily prices of relevant stocks,adjusted for dividends and splits.These can be found in Yahoo Finance,DataStream or Eikon(help  line 0800442000 for both)and  Bloomberg.If you are unfamiliar with these data services,please contact the data providers for help.

1.2.Corporate yields.You can estimate the term structure of corporate bond yields across different ratings with the Nelson and Siegel(NS)method.The data to apply the NS method on corporate bonds can be found in the Excel file“US Bond data 2024 Datastream   -Students"in the“Group Project"folder in“Course Documents"on Blackboard.

1.3.US Treasury zero coupon yield curve.This can be sourced from Bloomberg,Reuters or Datastream.

1.4.A  transition matrix.Transition matrices can be found in Moody's“Annual default study …xlsx"(Excel  Data)Published on 14 April  2023.Also,familiarise yourselves with the "Annual default study:Corporate default rate will rise in 2023 and peak in early 2024" published on 13 March 2023,which provides insightful comments on the data in the excel file.You will need to register with Moody's at www.moodys.com to have access to these documents.Registration is free.

1.5.Credit ratings for each loan in your portfolio.These can be found in the Moody's website( www.moodys.com ).Simply type the name of the company of interest in the search bar on top of the landing page to find the company's rating.You may need to  register with Moody's to have access to the rating information.Registration is free.

1.6.LGD data.Aggregate LGD data can be sourced from the excel file in point 1.4.Issue  specific LGDs for a given company can often be obtained directly from the Moody's website under the"Ratings and Assessments"menu available from the company's credit profile page.

2.[50%weight-Sub-questions are equally weighted] Model applications.

2.1.With CreditMetrics,full implementation and variable recovery rates,compute Absolute VaR and Absolute Expected Shortfall.Time horizon:1 year.Use two confidence intervals:95%and 99%.

2.2.Redo the calculations in point 2.1 when the time horizon is 3 years.

2.3.VaR stability:

Show with your own calculations that your VaR and Expected Shortfall in question 2.1 are sufficiently stable given the number of simulations you have used in 2.1.The stability analysis in this question should be done by writing your own Python code.Please include the code in your submission.

2.4.Stress testing:compute the absolute VaR and ES (time horizon:1 year;confidence levels:95%and 99%)under the following stress scenarios:

a.Assume stressed PDs computed as the maximum PD for each rating observed over the 1920-2022 period in the 2023 Moody's"Annual default study",Exhibit 36.

b.Assume that the zero-government bond yield curve is a linear interpolation of the 2000-2021 average 3-month US treasury rate and the 2000-2022 average 10-year US treasury yield that can be computed from“Table 2.A.Historical data:

Domestic variables,Q1:2000-Q4:2021"in the Federal Reserve Board"2023 StressTest Scenarios".

c.Assume credit spreads increase,for each rating,by the same percentage as the increase in PDsfrom the value used in 2.1 and that obtained in 2.4.a.For instance,if the PD goes up from 1%to 2.2%then the credit spread should be increased by 1.2%.

d.Compute moving average correlations of stock returns for the borrowers in your   portfolio from 2007.The time window of the moving average should be one year. Correlations should be computed with daily frequency.In CreditMetrics,assume the maximum moving average correlations for each pair of borrowers over the observation period.

e.Consider a scenario when you combine all of the above scenarios.

2.5.Do a reality check on all the above calculations.Are your results as you expect them to be?Why or why not?



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图