代写MECH E4320 (Fall 2024): Homework #6代做迭代

MECH E4320 (Fall 2024): Homework #6


1.   Resolve the 1-D chambered non-premixed flame problem solved in class but now for a system with PDF  ≠ PDo  ≠ λ/cp  (but still with constant PDF , PDo , and λ/cp  throughout the chamber) using only the reaction sheet assumption (since you cannot apply the simple coupling function presented in class to non-equidiffusive systems).  Use th~e ~fact that~there are no reactions from 0  ≤ x < xf a~nd fr~om xf  <~x ≤ l to define functions~ for~YF , Yo , a~nd T on either side of the reactant sheet (i.e. YF , Yo , and   T   for 0 ≤ x < xf  and   YF+ , Yo+ , and T+for xf  < x ≤ l ).   Then apply the reaction sheet jump relations and continuous function requirements (for species and temperature) (with “no leakage”) to provide  additional  e~ffec~tive  bou~ndary  conditions  that  allow you to  solve  for  the coefficients in the expressions for YF , Yo , and T on either side. (6~0 points)

            a.    Solve for the flame location,x(~)f, and flame temperature, Tf .  Rework them into a form that

allows for a straightforward comparison between the equidiffusive system analyzed in class and the present non-equidiffusive system.  (Use the expressions highlighted in red below for comparison.)

b.   How does the flame location for non-equidiffusive systems differ from that ofequidiffusive systems?  Physically, why would that be?

c.    How  does  the  flame  temperature  for  non-equidiffusive  systems  differ  from  that  of equidiffusive systems?  Physically, why would that be?

Note  that  to  find  the  flame  temperature  in  the  solution  for  equidiffusive  chambere~d  flam~es presented  in  class,  we  ca~n  evaluate  the  temperature  at  either  xf—  or  x (using  T — or  T+ , respectively).  Evaluating T —  at xf—   gives:

Separating the second term and using our expression for xf  in one of those separated terms:

gives

where the boundary temperature terms represent the sensible enthalpy in the reactants (weighted by proximity of the flame to the boundaries) and the final term represents the chemical enthalpy converted to sensible enthalpy from combustion (as we will see more clearly next class).  Use the expressions highlighted above in red for comparison in your answer to question 1.

2.   Perform. some initial aspects of an analysis of premixed flames for simple idealized systems. Again, keep in mind that many concepts even from this simple idealized analysis still often apply to the local structure and trends of more complicated, even turbulent, flames, such that many of our results are in fact more general properties of premixed flames.  Here, consider a steady-state, adiabatic, laminar, and  1-D planar premixed flame for sufficiently off-stoichiometric systems where one reactant is present in large excess in the pre-mixture, for the reaction


D + E → P

where D is the deficient reactant and E is the excess reactant, which is present in sufficient excess that its mole fraction is roughly constant, i.e. YE(x) ≈ YE ≈ constant, throughout the entire domain. In such a way, it is then only necessary to keep track of variations in the deficient reactant, YD. You can also assume that PDi  and λ/cp  have constant values throughout the domain but are not necessarily equal to each other, i.e. PDi  ≠ PDj  ≠ λ/cp .

Laminar premixed flames are (subsonic) waves that propagate through a reactive fluid mixture at a given velocity called the laminar flame speed, su .  If we choose a reference frame such that the unburned flow velocity far upstream of the flame, uu, is equal to the laminar flame speed, su, then the flame is stationary in that reference frame.  The boundary conditions for such a system can then be expressed as


Where  indicates that all derivatives of all orders, k, are equal to zero.  The subscripts u

and b are used to refer to the unburned and burned mixtures.

a.   Use the continuity equation to show that f is constant throughout the entire domain and that the unburned and burned flame speeds can be related by the density ratio across the flame. Given that ρu/ ρb is usually in the range of ~5-10, is the burned flame speed higher or lower than the unburned flame speed?

b.   To relate the burned gas temperature (i.e. the flame temperature) to the upstream boundary conditions, it is useful to consider our earlier equation for total enthalpy, h, instead of our more commonly used equation for sensible enthalpy, hs .

 

Integrate this equation from -∞ to +∞ and use the boundary conditions above to show that

hu hb

which is exactly the same equation we used for adiabatic flame temperature for constant- pressure, homogeneous conditions. Then, separate the total enthalpy into sensible enthalpy and enthalpy of formation for the mixture, h = cpT + Σ Yihi(o) , to show that the equation above becomes

 

where qc is the heat of combustion per unit mass of the deficient reactant.

c.    If the reaction rate term can be described by

where we have used vD  = 1, and defined a new expression for Bc  (that you do not need to show!)


Then, show that our familiar equations

 

can be transformed into the non-dimensionalized equations

 

For which a non-dimensionalized x is defined as

 

where  (λ/Cp)/fo   conceptually  represents  a  characteristic  flame  thickness  (where  the symbol f o is used instead off to emphasize that it is constant throughout the domain), and

is the collision Damkohler number comparing characteristic collisional times (of reaction) and characteristic transport times.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图