代写GSOE9510 - Summer 2025 The Fishery Challenge

GSOE9510 - Summer 2025

The Fishery Challenge

(Team Project)

Summary

This project focuses on the learning objective of sustainability, but involves consideration of ethics, context and teamwork, too. You will work in a team of 10-12 students. Note that the groups formed for this game are independent of your workshop groups or sessions. Students from different workshop groups and sessions can also form a group together to play the fishing game against other teams.

PART 1 involves you playing a simulation game as part of a team. You will be playing against the other student teams. (Study the marking scheme (attached) and you will see that the winning team gets an extra mark!) The game is described below. It involves you accumulating ‘wealth ’ by ‘fishing’ from a common stock of fish.

For PART 2 you will write an individual short summary about what you have learnt from this whole project and describe how your team operated. The requirements for this report will be given once the game is over, as they will depend, in part, on what happens during the game.

Team membership: You must select your project team on Moodle. Course Syllabus Materials> Select A Project Team

Marks: You are reminded that this project will count as  15 % of your summative mark in this course and is a team mark. Additionally, you will reflect on your experience playing this game and creating the learning resource. This will count as 10 % of your summative mark in this course and is an individual mark.

Learning Objectives

With reference to the GSOE9510 learning objectives, this activity will help you learn about the following.

Organisations & leadership               Specifically, by considering the team in which you work

Engineering’s context                       There are many perspectives on a technology, besides the purely technical one.

Sustainability                                   This is the major focus

Identifying problems of ethics            Noting that the profession has nominated sustainability as an ‘ethical good’.

Over the next few weeks, we will build further on these ideas. You will be involved in many discussions with  the rest of the class. In  these discussions, the diversity of perspectives is important. In your professional practice, too, you will need to communicate with many parties who do not share your engineering view of a problem. You are well aware of how failure to consider the context of an engineering design often leads to a serious failure of the overall system. You will also need to examine messy problems, i.e. those with uncertainties and multiple conflicting aims, from several different perspectives.

Background

Sustainability does not have a simple explanation. In essence, it is about the future, specifically whether a system can persist into the future and, if so, in what form. Analysis of, and subsequent decisions about, sustainability often follows a computer-based simulation of a scenario playing out as away to predict the future. This project is based on such a simulation, examining a ‘fishing system. ’ It will involve ecological, economic and technological aspects, but not social. Note, too, that a simulation should match reality. Reality includes ambiguities and random events.

Malthus is famous for arguing that indefinite linear growth models are nonsensical in reality, but it was Verhulst who introduced the logistic equation to give mathematical form. to this observation. Lotka and Volterra independently studied the interaction of predators and prey by using nonlinearly coupled equations. The latter applied his work to a successful study of Mediterranean fisheries. Such coupling between different components (equations) in a system (model) means that the system maybe chaotic, depending on the precise values of the model’s parameters. Such a situation is not unusual in engineering. For example, the equations governing lasers show similar potential for such behavior. More generally, chaos is a consequence of systems having some form.  of feedback, which is a surprisingly ‘normal’ circumstance. However, the identification of domains of chaos is usually a very difficult mathematical challenge.

Chaos is a mathematical state; it means that we cannot have a deterministic knowledge of the future. Alas, this ‘inconvenient’ possibility is often neglected by those who use models. Remember, too, that any modelling is only as good as the assumptions being made, some of which depend on intrinsically imperfect measurements of reality.

PART 1 – ‘Playing the Game’

Your team is one of N competing in a game. Each round (Round n) of the game you must complete instructions and submit them to

Baruwaluuwu using the designated discussion tool on Moodle. The outcome of that round of play will be posted on Moodle soon  thereafter. Your team’s instructions for each round are due according to the times in Table 2 below. You see we plan to play 12 rounds in total.

The first set of instructions is due 6 pm Tue 11 January.

Goal

You will win the game if you have the highest value of assets at the end of play, assets being the total of your bank balance and there-sale value of your fishing units. Your team’s sources of wealth are fishing and bank interest which earnt by your monetary reserves.

Fishing units

Of course, catching fish is an ‘unnatural’ action for humans (unlike, say, pelicans or dolphins). To catch fish, you need to use ‘technology’ meaning, in this case, a fleet of fishing units. These can be bought (and sold) during the game.

Each round, your team gets paid for its fishing catch at the rate 10 CU/UoF, where UoF denotes Units of Fish and CU denotes Currency Units.

As your team gains more wealth, it can provide engineers with the resources needed to introduce new technologies, i.e. better ways to catch fish. First, they can make units mobile. Second, they can make them more ‘efficient’ (measured by UoF/fishing unit).

Type

Haul

Price (CU)

Travel

Resale

scrap value

(CU)

In-shore

expense

(CU/round)

Off-shore

expense

(CU/round)

Local-fisher

Mobile-fisher

Heavy-fisher

1

1

5

100

300

1200

no

yes

yes

15

45

180

100

100

200

-

200

400

1.   A local-fisher can only fish in the fishing ground off the port where it was built. It cannot be relocated and it only fishes in the port which is assigned to the team. A mobile- or heavy-fisher can fish in any fishing ground.

2.   Haul is the factor used to calculate the catch. A heavy-fisher catches 5 times as much in terms of UoF, all else being equal.

3.   Fishing units have operating  expenses each round. Each unit incurs a baseline cost of 50 CU/round. The additional expense depends on whether the unit is off-shore or in-shore. For example, a local-fisher working in-shore costs 100 CU/round; a heavy-fisher off-shore costs

400 CU/round.

4.   A fishing unit can be scrapped (sold to recyclers). Scrap value is fixed, at 15 % of initial cost.

Ship-building

In any round, the engineers (ship-builders) can only accept total orders from all teams of 20% more than the total orders of the previous round. Engineers cannot expand their business at an infinite rate: new staff take time to train. Their activities will contract if no business is forthcoming: engineers will leave the industry. Obviously if there are no orders from anyone, the engineers go out of business!

To prevent their business  from being  exposed  to  any  particular team’s  financial  failure,  the shipbuilders limit the size of your team’s order. In any round, no team’s order can exceed one-third the ship-builders’ total capacity.

If total orders exceed the maximum ship-building capacity available, the excess will be deferred into the next round (or later). Each fishing unit is built at the same rate, which means cheaper units are finished first.

You are charged half the price of the ordered unit in the round when you order it; you are charged the second half in the round when it is completed. This maybe the same round, so be prepared to pay full price immediately. You cannot use it for fishing and it costs no operating costs until the round after delivery, i.e. when you can use it. You may cancel an unfinished unit, but you do not get the deposit refunded.

The fishing area

The fisheries consist of in-shore and off-shore fishing grounds, forming concentric circles as shown in Fig 1. The FOUR interior, off-shore grounds are denoted W, X, Y & Z. The 2N exterior, in-shore grounds are denoted by A, ab, B, bc, C, cd, etc. Every second in-shore sector has a port.

Fish stock surveys

If you want to know something about the population of fish, then you must spend money on research. Whenever one of your fishing units works in a particular fishing ground, you can pay for a fish-stock survey which will tell you the population of fish during that round of play in that specific fishing ground. Each in-shore fishing survey costs 10 CU and each off-shore survey costs 20 CU (because you need to pay for more travel-time by the fish researcher).

Financial considerations

All transactions are rounded to the nearest CU. Your team’s financial balance is calculated at the end of each round. If the balance is positive, interest at rate +r is added to your account. If the balance is negative (i.e., you are in debt), interest at rate R is debited from your account. In this game, in an era of low interest rates, r = 0.05 and R = 0.08.

A team’s maximum permissible debt (or overdraft) D is at least 450 CU. It increases when the fishing business is operating successfully, and at the end of Round n, it is calculated from the income from fishing in Round (n − 1).

D = R/value of catch − operating expenses CU

If its debt exceeds this permitted maximum, there must be a sale of your team’s assets, i.e. fishing units, at the start of the next round to get it within the limit. If a team’s balance cannot get within its permitted overdraft, then it is BANKRUPT.

Bankruptcy

Bankruptcy is part of the ‘business cycle.’ If a team is bankrupt, then it misses the next two rounds of play (and doesn’t score the mark for avoiding bankruptcy). After sitting out these rounds, the team resumes play with 100 CU. Upon resumption, the team’s first decision is whether or not to order a new fishing unit.

In the beginning

The game has the following initial conditions.

•   Your team has 1 local-fisher (unit xL01, with x ∈  {A,B,...} denoting your team) with a designated ‘home’ port, that differs for each team. (Recall that, when not in port, this fishing unit can only fish in this same space all game.)

•   Your team has 300 CU.

•   Your team’s permissible debt at the end of Round 1 is 450 CU.

•   The engineers can accept a total order from all teams for new fishing units of 225N CU in Round 1.

Apart from the geography of Fig 1, there is no other initial knowledge of the fishing grounds.

One round of gameplay

For each round, the information you need to provide is shown in the examples of Figure 2.

1.   Your team allocates each of its fishing units.

Each unit should be either kept in port or sent to a specific fishing ground as shown on the map in Fig 1. Remember a local-fisher can only be sent to the fishing ground off the port where it was built, i.e. where it starts.

Note that any unallocated unit will be assumed to be in port for the round. This incurs its baseline expense but catches no UoF.

2.   Your team may buy and/or sell fishing units.

Complete any forced sale needed to reduce your debt. Bought units can only fish in the round after they are delivered,i.e. you have finished paying for them. They are being built this round. Engineers work at a finite pace. Any deposit, though, is expenditure in the round a unit is ordered. You may scrap any unit in any round. Units sold will incur no operating costs in the round.

After playing’ each round,you get the current state of the game.

The following public information will be available after each round. It will be posted in the public discussion by Baruwaluwu. An example is found in Figure 3.

•   total fishing units by type that were in each fishing ground

•   the total combined average catch of all fishing units for the round (Not yours, but for everyone combined.)

•   total capacity of the shipbuilder for the next round (You can order only up to 1/3 of that.)

Each individual team will receive the following information from Baruwaluwu. Since you might want to keep this confidential, it will be provided in your team’s private discussion thread on moodle. Examples are found in Figure 4.

•   the individual catch and operating costs for each of its fishing units

•   the average stock of fish in any fishing ground for which a survey was bought

•   the detailed statement for its account

•   its currently permitted maximum overdraft and any need for a forced sale

•   the state of its orders with the shipbuilders

NB: The numbers in the examples of Figs 2-4 may be impossible for the parameters (prices, interest rates, fish populations, etc) we use this year.

Round 1

For Round 1, there are very few decisions to make.

•   Do you fish? or leave your local-fisher (unit xL01) in port?

•   Do you survey the fish population?

•   Do you order another fishing unit?

Procedural matters

Each team must decide instructions by the due date for each round. These must be submitted in the link:https://forms.office.com/r/0ziw5dv3ya.

After the round is played, Baruwaluwu will reply with the outcomes for that round. Instructions for each round are due according to the table below, unless a subsequent message indicates that an extension is granted. Common information will be posted in the project’s common space in Moodle.

Week

Round

Deadline

2

1

6 pm, Tue 14 Jan

2

6 pm, Wed 15 Jan

3

6 pm, Thu 16 Jan

4

6 pm, Fri 17 Jan

3

5

6 pm, Tue 21 Jan

6

6 pm, Wed 22 Jan

7

6 pm, Thu 23 Jan

8

6 pm, Fri 25 Jan

4

9

6 pm, Tue 28 Jan

10

6 pm, Wed 29 Jan

11

6 pm, Thu 30 Jan

12

6 pm, Fri 31 Jan

The ‘missing’ times allow you extra time as a contingency for the preparation of the learning resource and also the in-class test. We plan to use the result of the game during the final tutorial activity in Week 5.

This is a competitive game that exercises your communication skills and co-operation. It requires you to work with your team-mates. Study the marking scheme attached. You are not explicitly asked to exercise negotiation skills (though that probably will happen as it is intrinsic to working in any team).

The following is the way that PART 1 of this project—‘playing the game’—will be marked (out of 8).

Criterion

Comment

Mark

Winning the game

2

not going bankrupt

2

conduct

clear, legal instructions; prompt replies received by due date for each round minus

0.5 per missing instruction

4

feedback

about   the   game;  any improvements? (apart from graphics!)

2

bonus

reverse engineering the model!

You are engineers; you cannot help but be curious. Is the research needed for your fishing operations?

4

surprise

Will be revealed in the end of the game

1

TOTAL

15


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图