代写Individual Assignment Assignment 1: Used Car Price Prediction帮做R语言

Individual Assignment (15%)

Assignment 1: Used Car Price Prediction

Objective:

In this assignment, you will take on the role of a data science consultant for a national used car resale company in America. The company wishes to expand its business by purchasing more used cars from the market. Your task is to develop a machine learning model to predict the selling prices of these cars. Accurate price predictions will help the company buy cars that can be sold for a higher price, thereby increasing profit margins and avoiding cars with lower resale value.

You are tasked with delivering the first sprint of this project within three weeks. This first sprint focuses on data understanding and preparation. Specifically, you need to produce the following deliverables presented in a report format at the end of this sprint.

Data  Quality  Summary:  Validate  with  client  that  the  data  received  is  accurate,  reliable,  and representative.

Data Exploration Summary:  Provide insights on interesting  patterns and relationships between variables.

Data Preparation and Feature Engineering Plan: Detail the strategies to address data issues and outline the feature engineering process.

Suggested steps for to Follow:

1. Perform Data Profiling: Understand the data by examining its structure and contents (e.g. statistical summary, visual exploration, etc.)

2. Identify Insights: Analyze the data to uncover interesting patterns and relationships (e.g. correlation analysis, etc.)

3. Address Data Issues: Investigate ways to fix any data issues (e.g. outlier detection, data capping, etc.)

4. Feature Engineering: Transform. existing features and derive new ones to improve the predictive power of the ML model. (e.g. data standardization, feature transformation, features construction, etc.)

This assignment will help you apply concepts learned in the first three lectures of this  course, facilitating practical understanding and application of machine learning methodologies for financial market modelling opportunities.

Dataset Description

You will be provided with a CSV file (`car_data.csv`) containing historical resale data of used cars. Here's a description of the dataset:

Name: pre-owned_cars_data.csv (7,100 records, 13 variables)

Column

Description

Name

Brand name and model

Year_Manufactured

Manufacturing year of the car

Mileage_Offered

The standard mileage offered by the car company in km per liter

Type_Of_Owner

Number of previous ownerships

Type_Of_Transmission

Automatic/Manual

Car_Engine

The displacement volume of the engine in CC.

Distance_Driven

Total kilometers driven by the previous owner(s)

Type_Of_Fuel

Type of fuel used by the car (Petrol, Diesel, Electric, CNG, LPG)

Number_Of_Seats

The number of seats in the car

Car_Power

The maximum power of the engine in bhp (brake horsepower).

Price_When_New

The price of a new car of the same model in USD.

Location

The location in which the car was sold

Price

The price of this car sold in USD

Submission Requirements:

•    To   successfully   complete   Assignment   1,  please  submit  a  client  consultancy  report  in PowerPoint  format.  The  report  should  include data profiling, insight generation, a data preparation strategy, and the input dimensions of the data and the description of selected variables to be used for the machine learning model development.

•    At the end of the report, you also have to include an appendix section with answers to the specific questions listed below. You should find it easy to answer these questions, as you will have considered them while preparing your consultancy report.

Marks will be deducted if you do not include this appendix section.

Deadline:

•    Submit your assignment by January 15, 2025, 23:59:00.

Answer these specific questions put your answers in the appendix section of your ppt.

Data Profiling Questions:

1.    What are the basic statistics and distributions of values for each variable?

2.    Are the values in the numeric variables normally distributed?

3.    What are the cardinalities of the categorical variables?

4.    Are there any variables with missing or invalid values?

5.    Will you create any new variables from the “Name” column? If so, what are they?

Data Cleaning Questions:

6.    Will you reformat values in any of the variables?

7.    Excluding null or empty values, how many invalid values are present in the “Number_Of_Seats” variable prior to data cleaning?

8.    What  is  a  more  accurate  method  for  filling  in  missing  values  in  the  “Number_Of_Seats” variable, using mean, median, mode or other method?

9.    When imputing missing values in the “Car_Engine” column, is it better to use the median or mean? Please explain your reasoning.

10.  For the “Mileage_Offered” variable, how would you handle a value of 0.0 kmpl? Would you convert it to a null value, change it to a float number of 0.0, or use another method? Please explain your reasoning.

11. Similarly,  how  would you  address the value “null  bhp”  that  appears  in  the  “Car_Power” variable?

Feature Engineering Questions:

12. Will you discretize “Car_Engine” variable? If “yes”, which discretization method is better for this variable: equal-width discretization or equal-frequency discretization? Please explain your choice.

13.  If you plan to use linear machine learning prediction algorithms with the provided dataset, to build develop your model:

a)    How would you encode the “Type_Of_Owner” variable which is a categorical variable? Would you use one-hot encoding, label encoding, or ordinal encoding? Explain your   choice.

b)   Similarly, how would you encode the “Location” variable? Explain your choice.

c)    What is one disadvantage of encoding the “Type_Of_Transmission” variable using two dummy variables with one-hot encoding instead of a single dummy variable?

14.  For   the    “Mileage_Offered”    variable,    should   you    use    min-max    scaling    or    z-score standardization for feature scaling? Please explain your reasoning.

Feature Selection Questions:

15. Are there any dependent variables that are highly correlated with each other? What are they?

16. To assess the correlation between the “Location” variable and the “Price” variable, should you use Pearson Correlation or Analysis of Variance (ANOVA)?

17. Are there any variables you would eliminate for the machine learning model which is used to predict the “Price”? If there is, which variables will you eliminate and why?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图