代写SOEE2810: Coursework documentation The Last Glacial Maximum代做留学生SQL 程序

SOEE2810: Coursework documentation

The Last Glacial Maximum

1 Background

1.2 Ice ages

The last ice age was punctuated by an alternation of cold and warm periods, called glacial-interglacial cycles. The Milankovitch theory tells us that these were driven by cycles in the three main parameters that  influence the  Earth’s  orbit:  the  eccentricity,  obliquity  and  precession  (Figure  1).  Eccentricity describes the shape of the Earth’s orbit around the sun, varying from nearly a circle to an ellipse with a period of about 96,000 years. Obliquity is the tilt of the Earth’s axis of rotation with respect to the plane of its orbit, which changes with a period of about 41,000 years. Precession refers to the fact that both Earth’s rotational axis and orbital path precess (rotate) overtime – the combined effects of these two components and the eccentricity produce approximately a 21,000-year cycle. The three cycles have  different  effects  at  different  places  on  our  globe.  Obliquity  has  a  strong  influence  at  high latitudes,whereas precession has a notable impact on tropical seasons.

The Milankovitch cycles have a control on the variability in shortwave radiation that reaches Earth. The sum of the three Milankovitch cycles have been shown to be in phase with variability in aspects of climate,  such  as global  mean  temperature  and  global  ice  sheet  volume  (Hays  et  al.  1976).  In particular, the amount of shortwave radiation that reached the surface at the latitude of the Northern Hemisphere ice sheets (60N) controlled their growth and retreat and can explain the variations in ice sheet  volume  and  sea  level  during  glacial-interglacial  cycles  (Figure  2).  Glacial  to  interglacial oscillations occur on approximately a 100,000 year timescale (Figure 3). The last glacial period was at a maximum approximately ~21,000 years ago.

 

Figure 1 The main cycles in Earth’s orbit (Source Maslin, 2016)

 

Figure 2 The combined effect of precession, inclination and eccentricity on incoming shortwave radiation and temperature (sourcehttps://www.periodni.com/gallery/milankovitch_cycle.png)

 

Figure 3 Ice ages during the past 2.4 billion years (upper) and glacial-interglacial cycles over the past 450,000 years (Eldredge and Biek 2010).

1.3 Last Glacial Maximum

The  Last  Glacial  Maximum  (LGM),  is  defined  climatologically  as the  period  of stable  cold  climate around the maximum of global ice sheet volume approximately 21,000 years ago. During the LGM, land-based ice sheets more than 2km in depth, covered Canada, north USA, northern Europe and parts of Eurasia (Figure 4). Global sea level was 130 m lower than the present day, joining Britain to Europe, Australia to Asia and Alaska to Siberia. South of the ice sheets, conditions were cold, windy and dusty. There was 20-25 times more dust in the atmosphere due to reduced vegetation, stronger winds and less  precipitation to wash out  dust from the atmosphere. The  modern forests of  North America, Europe  and  Asia  were  tundra  and  grasslands.  There  were  lower  atmospheric  concentrations  of greenhouse gases such as carbon dioxide and methane, causing cooling and drying across the tropics. The main influencing drivers on LGM climate and how well we understand them are summarised in Figure 5.

Changes in orbital parameters over the 10s of thousands of year before the LGM lead to the build-up of these large ice sheets. However, by the time of the LGM, incoming shortwave radiation from the Sun had returned to levels that are similar to the present day (which subsequently initiated the move into today’s interglacial period). There is a time lag in the climate system between the minimum in incoming shortwave radiation and the maximum in ice sheet cover because (1) it takes time for the build-up of ice and (2) negative climate feedbacks reinforce the cooling (see section 1.4).

Deglaciation in the Northern Hemisphere started ~20,000 years ago. Deglaciation in Antarctica started ~14,500 years ago – at the sametime as abrupt sea level rise.

 

Figure 4 Land-based ice sheet coverage during the Last Glacial Maximum.

 

Figure 5 Influences on LGM climate cooling (generally feedbacks in glacial-interglacial cycles) and he  level of scientific understanding associated with each one (IPCC, 2007, Figure 6.5 in Chapter 6.4.1.3).

Why study the last glacial maximum?

•    It provides a means for evaluating the understanding and modelling of the response of the climate system to large radiative perturbations.

•    The LGM and the subsequent deglaciation have been widely studied because the radiative forcings, boundary conditions and climate response are well known compared to previous paleo-eras.

•    The response of the climate system at the LGM included feedbacks in the atmosphere and on land, amplifying the orbital forcing.

•    Concentrations of well-mixed greenhouse gases at the LGM were reduced relative to pre- industrial values, amounting to a global radiative perturbation of –2.8 W m–2.

1.4 Climate feedbacks

Small changes in incoming shortwave radiation at the top of Earth’s atmosphere, driven by changes in  the Earth’s orbit, can push the planet into or out of an ice age alongside Earth’s “climate feedback” mechanisms:

•    An  example  of  a  positive  climate  feedback  in the  LGM  is  the  ice-albedo  feedback;  when incoming solar radiation is reduced, global temperatures decrease, encouraging the formation of ice. Ice is white and reflects more sunlight than the ocean or land surface below it (high albedo), which further cools the area, reinforcing the cooling and allowing even more ice to form.

•    A  second example of a positive climate feedback is that the ocean is able to absorb  more carbon dioxide when it is cooler, so during glacial periods, when global temperatures were cool, the ocean could absorb more carbon dioxide. Lower concentrations of this greenhouse gas in the atmosphere reinforced the cooler temperatures.

•    An example of a negative climate feedback in the LGM is that the climate became much colder and drier with reduced vegetation, which increased the amount of dust in the atmosphere. This dust was deposited on the ice surface, making it darker and thus allowing it to absorb more  solar  radiation.  This  would  act  to  increase  the  surface  temperature  and  melt  ice, allowing vegetation to become re-established and reducing dust emissions.

It is the fine balance between external forcings such as changes to incoming solar radiation and climate feedbacks, that determines what the climate is like and how quickly it is changing at anyone time. In the LGM, variations in the planetary orbits decreased the incoming solar radiation, which started the glacial period but this was 1000’s of years before the glacial maximum. Climate feedbacks amplified the  reduced  solar  radiation;  by  the  time  of  the  LGM,  the  incoming  solar  radiation  had  almost recovered to present-day values but climate feedbacks and the long lag time between decreased solar radiation and global cooling kept the climate cool and ice sheets present for many more years.

There are many limitations and challenges to our current understanding of the climate during the LGM and how it developed. Lack of a substantial observational records limits our ability to understand and study the period and many open questions remain.

1.5 Surface energy budget

Earth’s surface energy budget describes the balance between radiation, conduction and convective heat flow into and out of the surface (Figure 6). By convention, flow towards the surface is positive and flow away from the surface is negative. Earth receives its energy from the Sun, through incoming shortwave radiation at the top of the atmosphere. Some of this energy is reflected back off the surface and the remainder is absorbed by the surface. The surface albedo defines the proportions. Heat is transferred  back to the  atmosphere via the  longwave  radiation  flux,  and the sensible  and  latent (convective) heat fluxes. Heat can also be transferred into the ground through the conductive ground heat flux.

Clouds complicate this system by reflecting incoming shortwave radiation back towards space and reflecting upwelling shortwave radiation back towards the surface. Clouds can also absorb and emit longwave radiation (Figure 7).

 

Figure 6 The components of the surface energy budget and how to compute the surface albedo.

 

Figure 7 A more complete picture of the Earth’s entire energy budget, including the impact of clouds.

2 Climate model documentation

2.1 What is a climate model and how does it work?

A climate model is the only way to project how climate may change in the future (Figure 8). They can also be used to reproduce present and ancient climates. Climate models solve complex mathematical equations that are based on well-established physical laws that define the behaviour of the weather and climate. However, it is not possible to represent all the detail in the real world in a computer model, so approximations have to be made.

Understanding climate involves running long (~500-1000 year) simulations to represent the climate in a chosen period. Different climate forcing scenarios can be implemented into the simulation such as  incoming shortwave radiation, natural and anthropogenic sulphur emissions, atmospheric aerosols such as sea salt, dust, volcanic emissions, ozone, greenhouse gases (e.g. carbon dioxide, methane, CFCs). Comparing a ‘control’ simulation, such as that for pre-industrial times with an ‘experiment’ simulation, such as one for the LGM isa means of exploring how different climate forcings may affect global climate. This provides a set of internally-consistent pictures of past climates, each dependent on a set of prior assumptions.

 

Figure 8 Schematic of a climate model. Data is stored at each ‘gridbox’ . Many processes are taken into account (see insert).

After the model is initialised there is a period of rapid adjustment (1st  year of simulation) and then it takes 10’s or 100’s of years to reach climate equilibrium. In the example in Figure 9 it takes 15 years of model simulation to reach equilibrium, so only the last 5 years of model data are used for analysis.

 

Figure 9 Model spin-up towards equilibrium.

There are many uncertainties in climate models; they are not truth, rather our best representation of climate in past, present and future periods. Uncertainties are due to three main reasons:

•    Uncertainties in climate model input data i.e. we are unable to accurately quantify aspects of the past climate such as the greenhouse gas concentrations and ice sheet extent.

•    The model simulates or approximates many climate processes such as ocean currents, clouds, ice melt and atmospheric circulation. We know that these processes are not represented with 100% accuracy in present-day climate simulations and are likely to be even less accurate in simulations of past climate.

•    Lack  of  available  observations  of   past  climates.   Observations  of   key  variables  such  as temperature,  greenhouse  gas  concentrations  and  ice  sheet  extent  are  very   limited,  so evaluating and verifying model simulations is very challenging.

2.2 HadCM3 model

HadCM3 (abbreviation for Hadley Centre Coupled Model, version 3) is a coupled atmosphere-ocean general circulation model (AOGCM) developed at the Hadley Centre in the United Kingdom. It was one of the major models used in the IPCC Third Assessment Report in 2001. Although now quite an old model, HadCM3 is still used in paleoclimate research because it’s relatively coarse resolution and simple representation of climate processes means it is quick to run on supercomputers, so can be run for thousands of  years, showing little drift in its surface climate.

HadCM3 is composed of two components: the atmospheric model HadAM3 and the ocean model HadOM3 (which includes a sea ice model). Simulations use a 360-day calendar, where each month is 30 days.

2.2.1 Atmosphere model (HadAM3)

HadAM3 is a grid point model that has a horizontal resolution of 3.75 × 2.5 degrees in longitude × latitude. This corresponds to a spacing between points of approximately 300 km. There are 96 × 73 grid points on the scalar (pressure, temperature and moisture) grid and the vector (wind velocity) grid is offset by 1/2 agrid box (see Arakawa B-grid). There are 19 levels in the vertical using a hybrid (sigma and pressure) coordinate system.

2.2.2 Ocean model (HadOM3)

The ocean model has a horizontal resolution of 1.25 × 1.25 degrees, and thus there are six ocean grid points for every atmospheric one. There are 20 vertical levels. For ease of coupling the two models the grids are aligned and the ocean coastline is forced to be aligned to the atmospheric grid.

2.2.3 Coupling

The atmospheric model is run for a day, and the fluxes (of heat, moisture and momentum) at the atmosphere-ocean interface are accumulated. Then the ocean model is run for a day, with the reverse fluxes accumulated. This then repeats through the length of the run.

2.3 HadCM3 simulations

Here we compare the climate model’s representation of the MODERN period (which relative to 21,000 years ago is close to present-day climate) with the climate model’s representation of the LGM.

HadCM3 is run twice; once for the MODERN period and once for the LGM period. The two model simulations are initialised with the appropriate ancillary data and are run for 500 years. The first year of each simulation is always discarded to allow for the initial model rapid adjustment to its ancillary conditions. The model climate settles down to an equilibrium over the course of the first 450 years of the simulations, so only the last 50 years of the simulations should be used to analyse the differences in climate between the LGM and MODERN periods.

2.3.1 Simulation details

 

MODERN

LGM

Experiment ID

teada3

teadv3

Time period

0 ka (1950 AD)

21 ka (21,000 years before present)

Coastlines

Present-day

Extended coastlines due to lower sea level

Ice sheets

Similar to present-day

Larger Antarctic and Greenland icesheets,   plus Eurasian, North American, Patagonian and Icelandic ice sheets

CO2  concentration

278 ppmv

188 ppmv

CH4  concentration

722 ppbv

375 ppbv

N20 concentration

273 ppbv

200 ppbv

2.3.2 Directory structure

•    /ancillary_files contains data used to initialise the climate model

•    [experiment_ID]/climatology  contains  50-year  climate  means  for  each  gridbox  (calculated from year 451-500 of the run). This data should be used to analyse the mean climate of the LGM and MODERN periods.

•     [experiment_ID]/time_series contains monthly means for 499 years of the simulation i.e. it does not include data from the first year of the simulation. This data should be used to analyse how long the climate in the simulations takes to reach equilibrium.

2.3.3 File naming convention of climatology files expID[a,o].XXYYZZZ.nc, where:

-             expID is the 5 letter simulation code (teada or teadv)

-             a/ois for atmosphere [a] or ocean [o] model output

-             XX is for the filetype (pc, pd, pf, pg, pt, as above)

-             YY is ‘cl’ for climate mean and ‘sd’ for standard deviation

-             ZZZ is ‘ann’ for annual mean, ‘jan’ for January mean, ‘feb’ for February mean. 2.3.4 File contents

Ancillary files

Ancillary files contain important input data required to initialise the climate model. These fields are static over the course of the climate  model  simulation,  but they  are  different  in the  two  model experiments. The ancillary files available to you are:

Filename

Contents

*.qrfract.type-ice.nc

Land-ice mask

*qrparm.mask-lsm.nc

Land-sea mask

*qrparm.orog-ht.nc

Orography height

Climatology files

Within [experiment_ID]/climatology there are 4 subfolders:

•    /pcpd contains atmospheric output. Generally pd files contain single layer (2D) fields (e.g.    1.5m temperature and pc files contain multi-level (3D) fields (e.g. temperature on pressure levels). Note sea ice fraction is available on both the atmospheric and ocean grids.

•    /pf contains monthly and annual mean ocean model output (mostly from the top ocean layer).

•    /pg contains annual mean ocean output (mostly 3D fields).

•    /pt contains vegetation model output.

•    Standard deviations are also included.

‘Diagnostic’ is the term used for data that is saved out from the climate model simulations e.g. near- surface temperature is a diagnostic. Summary of key diagnostics in the climatology files (many more are contained in the files, open the netCDF files to view the full list of diagnostics).

Subfolder

Diagnostic name in netCDF file

Diagnostic type

/pcpd

iceconc_mm_srf

Sea ice fraction on atmospheric grid

/pcpd

temp_mm  1  5m

1.5m near-surface temperature

/pcpd

downSol_mm_TOA

Downward shortwave radiation flux at top of atmosphere

/pcpd

solar_mm_s3_srf

Net surface shortwave radiation

/pcpd

downSol_Seaice_mm_s3_srf

Downward surface shortwave radiation

/pcpd

longwave_mm_s3_srf

Net surface longwave radiation

/pcpd

sh_mm_hyb

Surface sensible heat flux

/pcpd

lh_mm_srf

Surface latent heat flux

/pcpd

u_mm_p

U wind component on pressure levels

 

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图