代写CS917 Foundations of Computing - Maths and Stats Assignment代做Statistics统计

Department of Computer Science CS917

Foundations of Computing - Maths and Stats

Assignment

This assignment is due at noon on Thursday  19th December, 2024. The submission is on Tabula, and should comprise scanned copies of written work.

The work that you submit should be your own work and please show full working where appropriate, as this is necessary to gain full marks.

Marks for each question are indicated. The total marks you can get is 100.

If you have any questions then do please email meat [email protected].

1    Discrete Mathematics

1. For each of the following formulae, find a logically equivalent formula in which Λ ,  =→   and  ←→   do not occur:  (i) :(p   =→   q)  [5 marks]; (ii) ((p Λ q) _r) [5 marks]; (iii) :((p Λ q)  ←→  r) [5 marks]. Use the truth table to show that the proposed solution is indeed equivalent with the original one. [total 15 marks]

2. Write out paraphrases of the following, using 8, 9 and =  (i) Frodo has a ring [2 marks]; (ii) Sauron does not have any rings [2 marks]; (iii) The One Ring rules all the other rings [2 marks]; (iv) The ring that Frodo has is the One Ring [2 marks]; (v) whoever wears the ring, becomes invisible (i.e., no other ordinary human can see that person) [3 marks]; (vi) Bombadil Tom can see the ring-wearer, hence he is no ordinary human (use the previous statement from (v) to formulate this one) [3 marks].  Auxiliary clauses: has(x, y): x has/is in possession of y; rules(x, y): x rules y; wears(x, y): x wears y; sees(x, y): x can see y; and ordinary(x): x is an ordinary human. [total 14 marks]

3. Write predicate logic formulae which state that the relation expressed by Rx,y  has the following properties: (i) Rx,y  is irreflexive [3 marks]; (ii) Rx,y is intransitive [3 marks]; (iii) Rx,y  is not a partial order [3 marks].  Note that this formulation is a bit diferent from the one in the slides. To make this consistent, think about Rx,y   as Rp  with relation p between x and y (you can assume that both x andy are from the same set A). So you can use Rx,y  as p in your formulations.  Therefore, in your answer, you can use both notations, just be consistent (i.e., if you choose 1 notation, then use the same for all your answers).  [total 9 marks]

4. Determine which of the following functions are injective and which are surjective (please provide explanations as well):

(i) f : Z ! N, where 8n ∈ Z: f(n) = n2024 + 1 [3 marks];

(ii) g : N x N ! N, where 8(n, k) ∈ N x N: g(n, k) = 2n3k5n+k  [3 marks];

(iii) h : P(N) ! P(N), where 8A ∈ P(N): h(A) = N \A (recall what P(N) means) [3 marks];

(iv) k : N ! Z, where 8n ∈ N: k(n) = (-1)n   [3 marks]. [total 12 marks].

2 Statistical Analysis

Question 1 has two parts, each is marked out of 5. Both Question 2 and 3 are marked out of 10. Question 4 is marked out of 20.

1. A large database is compiled from files contributed by three sources: Source A, Source B, and Source C, which account for 20%, 50%, and 30% of the total files, respectively.  The percentage of empty files from each source is 4% for Source A, 2.5% for Source B, and 1.5% for Source C. If a file is selected at random and found to be empty, what is the probability that it originated from Source A?

2. A survey was conducted on a large number of individuals to record their dates of birth.  Assume that the sample size is sufflciently large to treat the dates of birth as uniformly distributed across all possible days.

(i) What is the smallest number of randomly selected individuals re- quired such that the probability of at least two of them sharing the same birthday exceeds 50%? Assume there are 365 days in each year.

(ii) Two individuals are selected at random from those born between January 1st , 1961, and December 31th , 2000. Given that at least one of these individuals was born in a leap year, what is the probability that both individuals were born in a leap year?

3. A directory contains 6 high-priority records and 4 low-priority records. These records need to be analysed by employees, and the workload is divided among them.  Four records are randomly assigned to Sam, but the priority of each record is not identifiable from the file names.  Given that the rst record Sam analyses is low-priority, what is the probability that all the remaining records assigned to him are of the same priority (all remaining either low-priority or high-priority)?

4. A small company operates two 72-core computers, Computer A and Com- puter B.

(i) On Computer A, it is known that each core is busy 50% of the time on average.  At any given time, what is the probability that 36 or more cores are busy simultaneously?

(ii) On Computer B, a random sample of 8 observations is taken.  The average number of busy cores in this sample is 40.5, with a sample standard deviation of 3.2 cores. One individual claims that the true mean number of busy cores is 36. Based on the sample data, is there sufflcient evidence to reject this claim at the 5% significance level?




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图