代写ST309 – Exercise 6帮做Python程序

ST309 – Exercise 6

This counts for 10% of the final assessment of the course.

The marks in brackets reflect marks for each question.

Please submit your solutions in a pdf file to Moodle by the noon (UK time) of Friday, 13 December 2024. Late submission entails penalties: 5 marks (out of maximum 100) will be deducted for every half-day (12 hours) within the first 24 hours after the deadline, and 5 marks will be deducted for each further 24 hours. Submissions are not accepted after 5pm on Wednesday, 18 December 2024.

You should only submit your own work, and cannot use materials from the past and/or your classmates. Plagiarism is a very serious ofense that is quite easy to detect.  It will result in instant failure (mark 0).

This exercise is on credit card fraud detection based on a data set downloaded from Kaggle Datasets at

https://www.kaggle.com/mlg-ulb/creditcardfraud

Background information on the data is available at

https://www.kaggle.com/mlg-ulb/creditcardfraud/home

Previous attempts can be found at

https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets/versions (All those analysis was done using Python.  But you should be able to follow the ideas, understand most the results. Especially some initial data exploration is easy to follow.)

The dataset contains 284,807 credit card transactions in two days in September 2013 by European card- holders, of which 492 are frauds.  So the data is highly unbalanced:  the positive cases (i.e.  frauds) account for merely 0.172% of all transactions.

Due to the confidentiality issues, the original features for each transaction are masked via a linear transfor- mation.  The 28 transformed features are presented as V1, V2, · · · , V28.  According to the  above webpage, those 28 features are the principal components of the original features.  No further information on those features is provided. In addition to those 28 variables, there are 3 untransformed variables:

• Time: number of seconds elapsed between each transaction and the first transaction in the dataset

• Amount: the amount of the transaction

•  Class: binary label with value 1 for ‘fraud’ and 0 otherwise.

The whole dataset has 284,807 rows and 31 columns.  The task is to build up efective algorithms for detecting fraudulent credit card transactions.

The  data is  extremely  imbalanced with  only 0.172%  ‘positives’  (i.e.   frauds).   Hence  the  information on frauds is overwhelmed by that on true and genuine transactions.  This imbalance leads the fitted models using the whole data predominately led by the information on ‘negatives’, and the signal on ‘positives’ is too weak to be picked up.  To balance the information used in building classifiers, we have created a more balanced but, unfortunately, much smaller training data with 24.62% positive cases, and also a testing data set which is about equally imbalanced as the whole data set.

•  creditCardTrain.csv: of size 1592×31, consisting of 1200 randomly selected non-fraudulent transactions plus 392 randomly selected fraud transactions. The true positive rate is about 24.62%.

•  creditCardTest .csv: of size 57889 × 31, consisting of 57789 randomly selected non-fraudulent transac- tions plus  100 remaining fraud transactions.  It has no overlaps with  creditCardTrain .csv.  The true positive rate is 0.173%.

The two data sets are placed on the course Moodle page.  For your information, I attach below the codes for constructing those two data sets.

> library(readr); library(dplyr)

> CC=read_csv("creditcard .csv")  # read_csv is a much faster version of read .csv

> CC1=CC[CC$Class==1,]  # extract all frauds

> dim(CC1)

[1] 492  31

> train1=sample(1:492, 392)

> CC1train=CC1[train1,]

> CC1test=CC1[-train1,]

> CC0=CC[CC$Class==0,]  # extract all genuine transactions

> dim(CC0)

[1] 284315     31

> train0=sample(1:284315, 58988)

> Dtrain=bind_rows(CC1train, CC0[train0[1:1200],])  # bind the rows from two data together

> dim(Dtrain)

[1] 1592   31

> Dtrain=arrange(Dtrain, Time)  # re-arrange rows according to ascending order of Time

> write.csv(Dtrain, row.names=F, "creditCardTrain.csv")

> Dtest=bind_rows(CC1test, CC0[train0[1200:58988],])

> dim(Dtest)

[1] 57889    31

> Dtest=arrange(Dtest, Time)

> write.csv(Dtest, row.names=F, "creditCardTest.csv")

> rm(CC, CC0, CC1, CC1test, CC1train, Dtest, Dtrain, train0, train1) # remove those objects

Your analysis should be based on creditCardTrain .csv. creditCardTest .csv represents the true reality, and should be used only to test the performance of your models.

1. Carry out some exploratory data analysis rst. You may like to address the issues such as

• are there any missing values and outliers?            [5 marks]

• should you apply any transformations to any variables, for example, log(Amount + 1)?           [10 marks]

• is Time relevant to detecting frauds?           [5 marks]

2. Suppose that the credit card company charges 2% fees for each transaction (deducted from the payment to payee).

(a) Estimate the expected potential loss of a fraudulent transaction.                                   [5 marks]

(b) Estimate the expected profit from a genuine transaction.                                             [5 marks]

(c) Let α denote the probability that a transaction is fraud. What is the minimum value of α to declare ‘Fraud’ in order to ensure that the expected profit from a single transaction is non-negative? [5 marks]

A simple illustration on how a credit card works: Suppose you purchase an item from a shop for £100 payed out of your credit card, the credit card company will pay £98 to the shop at the time.  By the end of the month, you pay back ££100 to the credit card company. So the company make a profit of £2. But if the purchase was not made by you (i.e. a fraud), you will not pay anything to the credit card company. The company will make a loss of £98.

3. Let the prot matrix be

           non-Fraud      Fraud

No                  B             −C

Yes               −1               0

where C and B  are calculated, respectively, in 2(a) and 2(b) tomer’s unhappiness when a genuine transaction is denied.

(a) Construct a decision tree for detecting frauds.

(b) Find the value of the cutting-of probability, denoted by α(^), which maximizes the expected profit. [10 marks]

(c) Test the performance of your decision tree on the testing data set, with the cutting-of probability 0.5 andα(^) respectively. Now you should calculate the true profits or losses according to the real amount of each transaction in the testing data sets.                                       [10 marks]

(d) Construct a logistic regression model for detecting frauds. You may use the same predictor selected in the tree model above.         [10 marks]

(e) Plot the ROC curves with the testing data for both the tree and the logistic regression classifiers constructed above, and compare them using the ‘area under curve’ .                               [15 marks]

4. In your opinion, what are the pros and cons of the above analysis? Do you have any suggestions for further improvement?                       [10 marks]

Note. The strategy to build classifiers using a subset with a much higher positive rate was merged after some initial and less successful attempts. This learning process also re丑ects one important principle of data analytics:

Iteration is the law of learning!


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图