代写ITP-216 Applied Python代做留学生Python程序

ITP-216 Applied Python

Final Project

Definition/Description

In the era of Big Data, data analysis and visualization is the best approach for extracting useful information and making decisions.

For your Final Project, you are tasked with creating a web app which manipulates and visualizes a Big Data dataset.

Requirements

General

Your web app shall be written in Python using Flask, pandas, scikit-learn, and matplotlib.

Your web app shall allow clients to choose what subsets of the data they would like to see (via text input, radio buttons, et al.), and the app will serve them a visualization of that data.

Big Data

You may use any dataset of your choice for your Big Data; follow your heart! It must, however, meet the following criteria:

1.   It must contain at least 1000 datapoints.

2.   At least half of the data must be numeric.

Your Big Data shall be stored on your server. It may be stored as a csv. For extra credit, your Big Data shall be stored in a database which your web app accesses.

Endpoints

Your web app should implement a number of endpoints.

1.   At least 2 endpoints used for GET requests,i.e. directly accessible by browsers (e.g. '/').

a.   At least 1 of these should be a dynamic endpoint created from a client POST request (e.g. for a web app which makes predictions on amounts of insects in a given area,  '/projection/butterflies' ).

2.   At least 2 endpoints used for POST requests,i.e. not directly accessible by browsers (e.g. '/login'from the Web App Homework).

Scientific Computation

Your web app shall do some sort of computation with the Big Data dataset. This could be as straightforward as aggregating attributes, but it needs to compute something meaningful.

Machine Learning

Your web app shall make predictions based on the given Big Data dataset. As long as your web app is using ML to make predictions, you're good to go. These could be:

1.   Predictions of how a particular property will change over time.

2.   Label classifications of data with unknown labels.

Data Visualization

Your web app shall visualize the Big Data dataset in some meaningful way. At least two types of plots should be accessible:

1.   At least 1 plot should visualize the data without any ML processing.

2.   At least 1 plot should visualize ML-processed predictions. These plots do not all have to appear on the same webpage.

Provided Files/Data

Example project

An example of the Final Project from last semester can be found here: http://pohlner.pythonanywhere.com/

This project visualizes COVID-19 confirmed and recovered cases, and also visualizes ML predictions of future confirmed and recovered cases. It uses datasets from The Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE), but only uses data up to mid-October.

*Example Project Usage Notes:

.    Make sure you’reusing Chrome or Firefox (not Safari or IE)

.    For Locale try “Mexico”  (case-sensitive)

.    For Date try “02/02/23” (format matters)

Reference material

1.   Flask documentation: https://flask.palletsprojects.com/en/1.1.x/

2.   Jinja documentation: https://jinja.palletsprojects.com/en/2.11.x/

3.   matplotlib documentation: https://matplotlib.org/contents.html

4.   Scikit-learn documentation: https://scikit-learn.org/stable/modules/classes.html

5.   Description of categories of machine learning models and different algorithms:

https://towardsdatascience.com/all-machine-learning-models-explained-in-6-minutes-9fe30ff6776a

6.   Matplotlib with Flask: https://stackoverflow.com/questions/20107414/passing-a-matplotlib-figure-to-html-flask 7.   https://stackoverflow.com/questions/65068073/error-while-showing-matplotlib-figure-in-flask

a.   https://stackoverflow.com/a/65068732

Big Data sources

You may use any dataset you'd prefer, as long as it meets the criteria for the Final Project. Below is a short, non exhaustive list of Big Data dataset options:

1.   Start here: Kaggle Open Source Data Sets for ML: https://www.kaggle.com/datasets

2.   80+ Free Data Sets: https://www.interviewquery.com/p/free-datasets

3.   Forbes list: https://www.forbes.com/sites/bernardmarr/2018/02/26/big-data-and-ai-30-amazing-and-free-public- data-sources-for-2018/?sh=5f4a369f5f8a

4.   Springboard list: https://www.springboard.com/blog/free-public-data-sets-data-science-project/

5.   Data from the City of Austin, TX: https://data.austintexas.gov/

Deliverables

All Python files, in the same directory, and compressed in a zip file. The zip file should be named:

ITP_216_FP_YourLastName_YourFirstName.zip

Grading

Section

Points (Total: 30)

Functionality and User Interface

1.   The root endpointshall display an input section for client-supplied data.

2.   Clients shall be able to select a query of existing data, or a prediction based on existing data.

3.   Clients shall be able to submit query information, which will generate a POST request.

4.   Clients shall be able to see queried information on returned pages.

4 (1 point each)

General Code

1.   The codeshall contain no global objects other than those provided.

2.   View functions shall only contain code related to the view function itself; anything else

(e.g. querying the database, constructing a pandas object, et al.) shall be separated and held in its own function.

2 (1 point each)

Web App

1.   Flask shall be used to create the web framework routing using endpoints and associated view functions.

2.   The web app shall query and manipulate the dataset.

3.   The web app shall contain at least 2 GET endpoints. (2 points)

a.   At least 1 of these shall be a dynamic endpoint created by a client POST request.

4.   The web app shall contain at least 2 POST endpoints. (2 points)

6 (1 point each)

Scientific Computation

1.   Pandas shall be used for manipulation of the data.

2.   The app shall calculate some sort of meaningful aggregation.

2 (1 point each)

Machine Learning

1.   Scikit-learnshall be used for the Machine-Learning aspects.

2.   A projectionshall be created of at least one of the features of the dataset.

2 (1 point each)

Data Visualization

1.   Matplotlib shall be used to visualize the data once it has been loaded, prepared, and manipulated.

2.   Figures shall have a title.

3.   Plot axes shall be labelled.

4.   Plots shall contain a legend, and datasets plotted shall be named in the legend.

5.   Plot axes shall have values clearly visible (numbers, names, et al.).

6.   A distinctionshall be made for any plot as to whether it represents existing data or predictive data.

6 (1 point each)

Documentation and Formatting

1.   Concise and useful commenting in your codebase is a must. You will need a header with  your name, the semester, the section of the course you are in, and the assignment number.

2.   You need descriptions of any major sections in your code (functions, classes, methods, et al.).

3.   Your code must be generally clear and readable.

3 (1 point each)

Error Handling

1.   The web app shall run with no errors.

2.   The web app shall reroute appropriately when given a nonsensical request (e.g. an

endpoint that a client isn't meant to request directly, a POST with the wrong data, et al.)

2 (1 point each)

Extra points for free!

3

Extra Credit (database)

1.   All data is stored in the database accurately (i.e. appropriate tables, key relationships [if any], attributes, and constraints on attributes).

2.   The database is queried correctly given the client input, and returns appropriate data.

5 (2.5 points each)

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图