代做BU.232.620 Empirical Project 1 (Linear Econometrics for Finance)代做Python语言

BU.232.620 Empirical Project 1 (Linear Econometrics for Finance)

In this series of (two) projects, you will analyze portfolios that are building blocks of most quantitative investment strategies in U.S. common stocks.

The following is what you are expected to do in the project

•  Read the following seminal article (you can download it from our Canvas course site).

Fama, Eugene F. French, Kenneth R., 1993. “Common risk factors in the returns on stocks and bonds"Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56.

You are expected to understand and explain how the 25 stock portfolios are formed on size and book-to-market equity.

•  Download the monthly return series of the 25 stock portfolios, as well as the market excess return factor, from Ken French’s Data Library

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Note: you are expected to be able to find the right data; this is one of the most important skills in practice!

•  Before diving into the regressions, you want to first summarize returns of the 25 stock portfolios

For the market excess return, refer to the “Explanatory returns” panel of Table 2 in Fama and French (1993) (page 14)

For the 25 stock portfolios, refer to the last panel “Book-to-market equity (BE/ME) quintiles of Table 2 in Fama and French (1993) (page 15)

Some questions you want to answer: Are the means significantly different from zero?

Do these returns follow a normal distribution?  Hint:  a normal random variable is symmetric (skewness=0), and its kurtosis is equal to 3.


•  Now you want to run a simple linear regression of each of the 25 return series on the market excess return to investigate how each portfolio depends on market portfolio.  In Fama and French (1993), this regression is written as

R (t) − RF(t) = a + b[RM(t) − RF(t)] + e(t)

Refer to the panel “Book-to-market equity (BE/ME) quintiles” of Table 4 in Fama and French (1993) (page 20)

Some questions you want to answer:  Are the loadings of the 25 portfolios on the market portfolio significantly different from zero, e.g., at the 5% significance level? If so, are the loadings positive or negative?  How much of the time series variation in the return of each portfolio is accounted for by the time series variation in the market excess return?

Now that you have done the reading and analyses, write a project report, which consists of the following three sections in general (basically, a short version of Fama and French (1993)):

1.  The first section is Introduction, which should contain a high-level summary of the re- search question, model, and findings.

2.  The second section should describe the data, including the data source and summary (the first table can be put here).

3.  The third section should explain the model used and the findings (the second table can be put here).

4.  The last section is Conclusion; you can add your own thoughts on how to improve the model, e.g., educated guess on adding explanatory variables/factors on top of the market excess return in explaining the 25 portfolios.

What You Need to Submit

The project report

The code you use in generating all the empirical results in the report

The TA Regression Demonstration Session will teach you the key Python procedures in conducting the data analyses, but you are expected to write your own code!

Some notes that discuss the main Python procedures are be provided; see Canvas announcements.

I will check the code to make sure no one simply copies the code from other people (the code will look somewhat different if one really writes his/her own code)!


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图