代写ITAO2009 Data Analytics for Business Academic Year 2024-2025代写数据结构语言

ITAO2009

Data Analytics for Business

Academic Year 2024-2025

Module Description

Increasingly, organisations are relying on data analysis to interpret corporate information when making business decisions. Indeed, timely and appropriate use of data analytics is considered a crucial component among organisations that are committed to achieving business success. This module explores basic methods and concepts in data analytics for analysing and interpreting data. The module takes both a theoretical and practical approach to the use of data analytics in practice.

A highlight of the module is the use of KNIME software to analyse data for decision making and evaluative purposes. Students who successfully complete the module will be able to signal to potential employers that they have the theoretical, practical plus industry-standard software skills to compete.

Module Content

The module is taught in two types of lectures, class lectures and computer sessions.  The first type (i.e., class lectures) will take place in class where the theoretical background on data analytics will be covered. It takes a holistic approach to understanding data analytics - the maturity of data analytics in industry; uncover where, when, and how it is being used; and identify whether or not its use results in greater effectiveness, efficiency and performance returns.

Indicative class lectures contents include:

•    Small and Big Data - Case study (e.g., Netflix, Facebook etc.)

•    Descriptive and inferential analytics

•    Applications of data analytics in business

•    The concept of confidence intervals and hypothesis testing

•    Simple and multiple linear regression analysis

Computer sessions focus on data analysis, covering both descriptive and predictive analytics, emphasising on methods, such as correlation analysis and regression analysis.  Computer sessions will be taught through instructor led computer workshops using KNIME software.

Indicative computer sessions contents include:

•    Introduction to KNIME

•    Descriptive analytics and visualisation

•    Correlation analysis

•    Performance of linear regressions

Learning Outcomes

On successful completion of this module students will be able to:

Subject Specific

1. Demonstrate an understanding of the role and impact of data analytics in dealing with a variety of business problems.

2. Demonstrate an ability to summarise, analyse and present data effectively to others.

3. Employ statistical techniques to draw well founded inferences from quantitative data.

4. Demonstrate an ability to use appropriate software.

5. Demonstrate an ability to understand the scope and limitations of quantitative methods.

6. Identify sources of published analytics, understand their context and report on their wider relevance.

7. Interpret and disseminate research results and findings.

General

1. Apply critical analytical skills and problem-solving skills to a variety of different situations.

2. Synthesize, analyse, interpret and critically evaluate information from a variety of different sources.

3. Work effectively as an individual and as part of a team.

Course Schedule

This module is taught in class lectures and computer sessions, and it will include group work, lectures, and computer practical. Classes will be a combination of the traditional lecture, discussion, and interactive student-led sessions. It is imperative that students undertake preparatory work before coming to each class. The itinerary for each session is provided in Table 1 of this document. Computer sessions will focus on the practical implementation of marketing analytics using KNIME software.

TABLE 1: ITAO2009 DATA ANALYTICS FOR BUSINESS SCHEDULE 2024/25

 

Lecture 1

Topic / Activity

    Introductions

•    Discussing the module’s Outline and Assessments

•    Explain how the module’s assessments are meticulously aligned with the module’s learning outcomes

•    A brief introduction to Data Analytics for Business

Main Textbook

•    Albright, S. C., & Winston, W. L. (2020). Business analytics: Data analysis and decision making. Cengage Learning, Inc. (Chapter 1).

Lecture 2

Topic / Activity

    Introduction to Business Analytics

Main Textbook

•    Albright, S. C., & Winston, W. L. (2020). Business analytics: Data analysis and decision making. Cengage Learning, Inc. (Chapter 1).

•    Koole, G. (2019). An Introduction to Business Analytics. Lulu. com. (Chapter 1).

Other Suggested Reading

•    Chahal, H., Jyoti, J., & Wirtz, J. (2019). Business analytics: Concept and applications. Understanding the Role of Business Analytics: Some

Applications, 1-8.

•    Power, D. J., Heavin, C., McDermott, J., & Daly, M. (2018). Defining business analytics: an empirical approach. Journal of Business Analytics, 1(1), 40-53.

•    Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. Journal of Business Analytics, 1(1), 2-12.

•    Schläfke, M., Silvi, R., & Möller, K. (2012). A framework for business analytics in performance management. International Journal of Productivity and

Performance Management, 62(1), 110-122.

•    Yin, J., & Fernandez, V. (2020). A systematic review on business analytics. Journal of Industrial Engineering and Management (JIEM), 13(2), 283-295.

•    Duan, Y., Cao, G., & Edwards, J. S. (2020). Understanding the impact of

business analytics on innovation. European Journal of Operational Research, 281(3), 673-686.

Computer

Session

1

Topic / Activity

    Introduction to Knime

Main Textbook

•    Knime training manual and lecture slides issued by course instructors.

Other Suggested Reading

•    Acito, F. (2023). Introduction to KNIME. In Predictive Analytics with KNIME: Analytics for Citizen Data Scientists (pp. 21-52). Cham: Springer Nature

Switzerland.

Canvas

Canvas will be used to post summary lecture notes. The module coordinator/ lecturer(s) will also use Canvas to communicate with the class, so it is important that students check Canvas and their University email account on a regular basis.

Assessment & submission deadlines

The assessment for the module consists of two assignments:

1.         Individual essay, due by 15 November 2024, worth 60% of the final grade.

2.         Individual analytics project in KNIME, due by 10 December 2024, worth 40% of the final grade.

Assignment 1: Individual Essay (60%):

Drawing on relevant academic and practitioner literature, critically evaluate the role of data analytics in the success of business activities in an industry or business context of your choice. (Hint! You may consider factors covered in the lectures, such as the data used and how it is used, benefits and limitations of big data (or any technique) application to business activities etc.)

The maximum word count for the individual assignment is 2,000 words (excluding tables, figures, references, and appendices). 2% of the maximum obtainable mark will be deducted for every 100 words over the word limit. The assignment must be submitted via university portal by 11.59pm, 15 November 2024. Students must ensure their name and student ID is included on the title page of their individual assignment.

The assessment sheet for this assignment will be provided in a supplementary file during the semester.

Please note that the School has a number of policies governing the submission of student  work. For all elements of assessment associated with this course you must be familiar with the School’s policies on:

•    ‘Participation, Preparation for Classes and Private Study’;

•    ‘Preparation and Submission of Assessed Work’; and

•    ‘Plagiarism, Collusion and Fabrication’ .

These policies are detailed in the Queen’s Business School Undergraduate Student Handbook.

Assignment 2 : Individual Analytics Project (40%):

Business Scenario

The estate agency Property Sales Ltd generates most of its profits from commission earned on residential property sales (i.e., the higher the sales price, the greater the commission earned from a sale). Working for the company, you have been tasked with producing a report on residential property sales handled by the company in the past 2 years.

Your analysis involves choosing variables to analyse which, based on evidence from a review of academic literature, have been shown to be linked to property prices.  The report aims include an analysis of sales data from the past 2 years, determining e.g., the distribution of sales in terms of your chosen variables.  The report will also aim to assist decision-making and planning for improved performance e.g., in directing what types of property the company might focus upon going forward.  Clear communication of the research findings is essential in reporting.

Data

Several datasets containing customer details will be provided to students.  All analyses must be performed using KNIME.

Analysis

You have been asked to provide a report for senior management with the following main sections:

1.  You must first assess the situation and consider all the various analytics approaches that could be useful for the business problem described above. Then, you need to proceed with the research question (s), variable selection, and hypothesis.

2.  Provide a data quality report based on descriptive statistics for each of the variables in the dataset  (use  both  statistical  and  graphical  output).  Comment  on  anything   unusual  or noteworthy that you see in the data.

3.  Use the dataset to proceed with the appropriate statistical analysis by selecting relevant variables (Hint! The analysis may include correlation analysis, and the final model should be a multiple linear regression model). Justify your choice of inputs & final solution.  Describe the final solution and provide the necessary intuition.

4.  Create a report for senior management outlining how your findings could be used to solve the business problem, by extensively discussing and interpreting your findings. The report must reference 1-3, above.

Suggested approaches, structure and marking criteria for the individual analytics assignment will be discussed during the workshop.

The maximum word count for the group assignment associated with the assignment is between 1,500 and 2,000 words (excluding tables, figures, references, and appendices). 2% of the maximum obtainable mark will be deducted for every 100 words over the word limit.

Students are required to submit the analytics assignment via university portal by 11.59pm, 10 December 2024.  Students must ensure their name and student ID is included on the title page of their individual assignment.

The assessment sheet for this assignment will be provided in a supplementary file during the semester.

Please note that the School has a number of policies governing the submission of student   work.  For all elements of assessment associated with this course you must be familiar with the School’s policies on:

•    ‘Participation, Preparation for Classes and Private Study’;

•    ‘Preparation and Submission of Assessed Work’; and

•    ‘Plagiarism, Collusion and Fabrication’ .

These policies are detailed in the Queen’s Business School Undergraduate Student Handbook.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图