CEN 413
Coursework I
ASSIGNMENT WEIGHTING: 30% weighting in the final mark
Required date of submission:
Requirements: This coursework aims to enhance your finite element modelling skills via basic use of the FE software package, ABAQUS.
You are expected to submit your coursework in the form. of a report. In other words, answers, solutions, plots and screenshots should be properly explained. Values not given in the brief should be stated and sources cited where necessary. The CAE and ODB files are to be submitted as well. It is advised that all files are compressed into one ZIP file and uploaded via the coursework submission link on LMO. Each file, including the ZIP one, should be named according to the following format: CEN413_CW1_Student ID_file name. Example: CEN413_CW1_2018368_CAE file.
Penalty scheme for late submission: Standard University Scheme applies.
PREAMBLE
A cold-formed steel (CFS) rectangular hollow section (RHS) acting in tension has the following dimensions: 100 mm width; 200 mm depth; uniform. thickness of 3.25 mm; 6.5 mm outer rounding radius; and 3.5 m length. Refer to EN 10219-2 to determine any other needed geometric properties.
Question 1
(a) Create a 3D Finite Element Model using ABAQUS to determine the resistance (peak load) of the cross-section. Plot the load-displacement data. You are expected to give concise explanations of the major steps involved in creating your model such as boundary conditions and meshing. [30 Points]
(b) Provide screenshots of the assembly, mesh and the Von Mises stress contour at failure. No explanations required. [10 points]
Displacement load should be applied to the RHS via a reference point coupled (restraint method) to the section. Mechanical properties such as yield and tensile strengths are assumed uniform. across the RHS cross-section.
Yield strength is (350+the last two digits of your student ID) N/mm2, ultimate strength is (420+the last two digits of your student ID) N/mm2, and the modulus of elasticity is 210,000 N/mm2. The elasto-plastic model should be used for characterising the steel material behaviour; use shell elements.
Question 2
i. What is the importance of mesh sensitivity analysis? [5 Points]
ii. Carry out a mesh sensitivity analysis and discuss the impact of mesh size on the tensile resistance of the section. A plot should be provided. [25 Points]
Question 3
Compare the results from Question 2 with the design tension resistance calculated based on Eurocode 3 (Part 1-3) provisions. Show your calculations. [30 points]
Submission deadline: November 8th Nov, 2024, Friday 23:59 pm