代做ECON5094 Detailed Reading List Part 2代做留学生SQL语言程序

ECON5094 Detailed Reading List

Part 2 - Tanya Wilson

The course companion texts are

• “Mostly Harmless Econometrics” by J. Angrist and J.S. Pischke, Princeton Uni-versity Press (noted in reading list as MHE)

• Blundell, R., & Dias, M. C. (2009). Alternative approaches to evaluation in em-pirical microeconomics. Journal of Human Resources, 44(3), 565-640. (noted in reading list as BCD)

I would advise all students intending to conduct empirical analysis in their PhD thesis to read these texts in their entirety. Relevant chapters/article sections corresponding to each week’s lectures are indicated.

For leisure reading:

• The Economist as Detective by Claudia Goldin - link to paper

• The Economist as Plumber by Esther Duflo - link to paper

• “Freakonomics” by Steve Levitt and Stephen Dubner

For each unit I have included key papers on the econometric methods used, references for the papers discussed in the lectures and additional papers which use the method described in the relevant lecture. * indicates required reading. Everything else is op-tional. Those papers in bold font have supplementary data files available - usually on the respective journal’s website.

1 - Randomised Experiments

Methodological papers:

* MHE - Chapters 1 and 2

* BCD - Sections I, II and III

1. Athey, S., & Imbens, G. W. (2017). The Econometrics of Randomized Experi-ments. In Handbook of Economic Field Experiments (Vol. 1, pp. 73-140). North-Holland.

2. Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal ef-fects using instrumental variables. Journal of the American Statistical Association, 91(434), 444-455.

3. Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688.

4. Banerjee, A., Banerji, R., Berry, J., Duflo, E., Kannan, H., Mukerji, S., Shotland, M. and Walton, M., 2017. From proof of concept to scalable policies: challenges and solutions, with an application. Journal of Economic Perspectives, 31(4), pp.73-102.

Empirical papers:

1. Bertrand, Marianne, and Sendhil Mullainathan. 2004. ”Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination.” American Economic Review, 94 (4): 991-1013.

2. Krueger, A. B. (1999). Experimental estimates of education production functions. The Quarterly Journal of Economics, 114(2), 497-532.

3. Miguel, E., & Kremer, M. (2004). Worms: identifying impacts on education and health in the presence of treatment externalities. Econometrica, 72(1), 159-217.

4. Angrist, J., & Lavy, V. (2009). The effects of high stakes high school achievement awards: Evidence from a randomized trial. American Eco-nomic Review, 99(4), 1384-1414.

5. Bandiera, O., Barankay, I., & Rasul, I. (2009). Social connections and incentives in the workplace: Evidence from personnel data. Econometrica, 77(4), 1047-1094.

2 - Natural Experiments, Differences-in-Differences

Methodological papers:

* MHE - Chapter 5

* BCD - Section IV

1. * Meyer, B. D. (1995). Natural and quasi-experiments in economics. Journal of business & economic statistics, 13(2), 151-161.

2. Rosenzweig, M. R., & Wolpin, K. I. (2000). Natural “natural experiments” in economics. Journal of Economic Literature, 38(4), 827-874.

3. Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How much should we trust differences-in-differences estimates?. The Quarterly Journal of Economics, 119(1), 249-275.

Empirical papers:

1. Smith, G. C., & Pell, J. P. (2003). Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised con-trolled trials. BMJ, 327(7429), 1459-1461.

2. Card, D., & Krueger, A. B. (1994). Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylva-nia. The American. Economic Review, 84(4).

3. Braakmann, N., Chevalier, A. and Wilson, T., 2024. Expected returns to crime and crime location. American Economic Journal: Applied Economics, 16(4), pp.144-160.

4. Bleakley, H. (2010). Malaria eradication in the Americas: A retro-spective analysis of childhood exposure. American Economic Journal: Applied Economics, 2(2), 1-45.

5. Duflo, E. (2001). Schooling and labor market consequences of school construction in Indonesia: Evidence from an unusual policy experiment. American Economic Review, 91(4), 795-813.

6. Meghir, C., & Palme, M. (2005). Educational reform, ability, and family background. American Economic Review, 95(1), 414-424.

7. Card, D. (1990). The impact of the Mariel boatlift on the Miami labor market. ILR Review, 43(2), 245-257.

3 - Instrumental Variables and Regression Discontinuity Design

Methodological papers:

* MHE - Chapter 4 and 6

* BCD - Section VI and VII

1. * Angrist, J. D., & Krueger, A. B. (2001). Instrumental variables and the search for identification: From supply and demand to natural experiments. Journal of Economic perspectives, 15(4), 69-85.

2. Bound, J., Jaeger, D. A., & Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endoge-nous explanatory variable is weak. Journal of the American statistical association, 90(430), 443-450.

3. Staiger, D., & Stock, J. H. (1997). Instrumental Variables Regression with Weak Instruments. Econometrica: Journal of the Econometric Society, 557-586.

4. Imbens, G. W., & Angrist, J. D. (1994). Identification and Estimation of Local Average Treatment Effects. Econometrica, 62(2), 467-475.

5. Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal ef-fects using instrumental variables. Journal of the American Statistical Association, 91(434), 444-455.

6. * Lee, D. S., & Lemieux, T. (2010). Regression discontinuity designs in economics. Journal of economic literature, 48(2), 281-355.

7. Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica, 69(1), 201-209.

8. Lee, D. S., & Card, D. (2008). Regression discontinuity inference with specification error. Journal of Econometrics, 142(2), 655-674.

9. Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of econometrics, 142(2), 615-635.

10. McCrary, J. (2008). Manipulation of the running variable in the regression discon-tinuity design: A density test. Journal of econometrics, 142(2), 698-714.

11. Gelman, A., & Imbens, G. (2018). Why high-order polynomials should not be used in regression discontinuity designs. Journal of Business & Economic Statistics, 1-10.

Empirical papers:

1. Angrist, J. D., & Krueger, A. B. (1991). Does compulsory school at-tendance affect schooling and earnings?. The Quarterly Journal of Eco-nomics, 106(4), 979-1014.

2. Angrist, J. D. (1990). Lifetime earnings and the Vietnam era draft lot-tery: evidence from social security administrative records. The Ameri-can Economic Review, 313-336.

3. Angrist, J., & Evans, W. (1998). Children and Their Parents’ Labor Supply: Evidence from Exogenous Variation in Family Size. The Amer-ican Economic Review, 88(3), 450-477

4. Anderson, M. L., & Matsa, D. A. (2011). Are restaurants really su-persizing America?. American Economic Journal: Applied Economics, 3(1), 152-88.

5. Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity analysis: An alternative to the ex post facto experiment. Journal of Educational psychology, 51(6), 309.

6. Lemieux, T., & Milligan, K. (2008). Incentive effects of social assistance: A re-gression discontinuity approach. Journal of Econometrics, 142(2), 807-828.

7. Angrist, J. D., & Lavy, V. (1999). Using Maimonides’ rule to estimate the effect of class size on scholastic achievement. The Quarterly Journal of Economics, 114(2), 533-575.

8. Lee, D. S. (2008). Randomized experiments from non-random selection in US House elections. Journal of Econometrics, 142(2), 675-697

9. Carpenter, C., & Dobkin, C. (2009). The effect of alcohol consump-tion on mortality: regression discontinuity evidence from the minimum drinking age. American Economic Journal: Applied Economics, 1(1), 164-82.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图