代做MECH0026 – Elasticity and Plasticity帮做Python语言程序

MECH0026 - Elasticity and Plasticity

Finite Element Analysis Coursework 1: Elasticity

1.  Introduction

Structural failure in plates forming the exterior of structures is usually initiated at the most highly stressed points of the structure, typically near a sharp corner or a hole. For example, an aircraft window, as seen in Figure 1, is one of the most highly stressed areas in an aircraft. Other examples include windows in ships or submarines.

Figure 1. Aircraft fuselage window (left), and a ship window (right).

For this reason, estimating the stress concentration introduced by geometrical discontinuities, such as holes, is of practical importance in the field of structural integrity monitoring. In this assignment, the finite element method is used to examine the stress field in the vicinity of the hole that is present in a plate. The results are compared with the predictions from the Theory of Elasticity; Topic 1.

2.  Assignment Aim

The aims of this assignment are the following:

•   To show how the finite element method can be used to solve stress analysis problems.

•   To obtain practical experience in using the commercial finite element package ABAQUS

•   To demonstrate critical analysis of the output obtained from the finite element analysis calculations, commenting  on  mesh  convergence,  element  behaviour,  and justifying technical arguments with experimental and theoretical results from literature.

3.  Stress Solution in the Vicinity of a Hole in an Infinite Elastic Plate

The stress field around the hole in an infinite elastic plate under uniaxial tension has been derived in lectures. In the (r, θ) coordinate system, these components are [1]:

This solution indicates that the maximum stress concentration factor (SCF) S, in this plate is in the vicinity of the hole:


The plate, of course, does not have to be loaded under uniaxial tension. Cases of biaxial loading (Figure 2) and shear are common – e.g. pure shear is obtained by imposing σ2   = −σ1. For these cases, the solution of (1) and superposition can be used to obtain exact solutions.


Figure 2. Plate with a hole, subjected to abiaxial load.

As we’ll see in class, the stress field can be found by superimposing the solutions due to σ 1  and σ2.

Figure 3. Solutions due to σ 1  (left) and σ2 (right).

The contributions due to σ 1  are:

The contributions due to σ2  are:

Making use of the below relationships, the contributions due to σ2  can be expressed in terms of θ 1  and σ 1 :

Therefore, the stress fields are:

4.  Coursework Tasks and Report

For your FE model setup, assume that the plate is thin and is made of an aluminium alloy, with material properties E = 70 GPa, and ν = 0.33. The stress biaxiality ratio is given in the table below, according to the first letter of your first name.

Table 1. Stress biaxiality ratios according to the first letter of your first name.

Your report should include the following sections:

1.   Description of the finite element model setup:

•   Geometry of the plate

•   Boundary conditions

•   Element type and justification of choice

•   Mesh configuration used and mesh convergence, including the physical quantity used for monitoring convergence, and the convergence criterion and convergence threshold used. NB: Typically, the quantity used for judging convergence is either the quantity of interest,i.e. something that you need to investigate, or a quantity that is most sensitive to mesh density. The convergence criterion is a numerical measurement that shows you how fast you are approaching mesh-independence of results. The convergence threshold is a target to reach mesh independence of results.

You can assume that the person reading your report is familiar with Abaqus. For the above items, include diagrams to support your descriptions.

2.   Post-Processing and Examination of Results

•   Distribution (field output) of the three components of the stress field in the plate from the FE analysis.

•   Plots of: from  the  FE  analysis  and  theory (superimposed), where ax  is the maximum applied stress (this will be either σ1  or σ2  depending on your stress biaxiality ratio) andr is the radial distance from the centre of the hole.

3.   A discussion on:

•   The location and magnitude of the maximum stress concentration factor (SCF), defined as where is the maximum stress component in the vicinity of the hole. Which stress component (σrr or σθθ or τrθ ) is largest, and where? How do your FE analysis calculations compare with the theoretical predictions for the location and magnitude of S? What are the discrepancies, what are the reasons?

•   The effect of the plate dimensions on the stress concentration factor (SCF) for the biaxiality ratio assigned to you. How do you expect the finite dimensions of the plate to affect the stress concentration observed at the hole, and for what reason?

For both discussion items, provide quantitative arguments, and support them with references and your own calculations/analyses.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图