data编程代写、代做C/C++程序设计
A Short Course on QT
A cross-platform application framework
Download QT
Installation
1. Run the qt installer you’ve just downloaded.
2. Sign up to acquire a QT account.
3. Accept the license.
Installation
4. Specify installation folder.
5. Select QT 6.x desktop development.
6. Proceed with installation.
Project
Step 1 Create a Qt Project using the wizard.
Project
Select Qt Widgets Application. Step 2
Specify project name and location.
Project
Step 3
Avoid using folder names with a space character (or any foreign characters).
Define the build system
Project
Step 4
Select qmake as the build system.
Use the default base class.
Project
Step 5
Project
Optionally, specify a translation language
Select a Kit
Project
Step 6
Select Manage button to customise the Kit for your project.
Select MinGW 64-bit kit
Project
Step 7
Click the MinGW 64-bit kit
Qt versions
Project
Step 8
Under QT versions, select the latest version (e.g. Qt 6.5.1)
Compilers
Project
Step 9
Under Compilers tab, select MinGW for C++ and C. You may remove the other existing
compilers for the project (if there are any) as we don’t need them.
Debuggers
Project
Step 10
Under Debuggers, we will use the one that comes with MinGW. Click Apply, then OK buttons.
Project
Click Next to proceed.
Project
Click Finish.
Project
Files comprising the start-up codes.
This is the Edit view
Project
Build directory.
A build directory is automatically created for the LetterRecognition project.
Select Form, mainwindow.ui
Project
Step 11
Design view
Project
Step 12
Add a horizontal layout
Project
Step 13
Add a label
Project
Step 14
Project
Step 15
horizontalSlider_maxEpochs
Property value
Widgets
Add a horizontal slider.
Add an LCD number.
Project
Step 16
horizontalSlider_maxEpochs
lcdNumber_maxEpochs
Widgets
Property value
Project
Step 17 Switch to Edit mode, then add a new header file to the project.
Project
Switch to Edit mode, then add a header file to the
project.
Click next, then finish.
Switch to globalVariables.h, then add an external
variable declaration.
Project
Step 18
#ifndef GLOBALVARIABLES_H
#define GLOBALVARIABLES_H
extern int maxEpochs;
#endif // GLOBALVARIABLES_H
Switch to Design view by clicking main.cpp
Project
Step 19
#include
#include "mainwindow.h"
int maxEpochs;
int main(int argc, char *argv[])
{
QApplication a(argc, argv);
MainWindow w;
w.show();
return a.exec();
}
Associate a function with the horizontal slider by
right-clicking it, then selecting Go to slot, then
the valueChanged() function.
Project
Step 20
#include "mainwindow.h"
#include "ui_mainwindow.h"
////////////////////////////////////////
#include "globalVariables.h“
MainWindow::MainWindow(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::MainWindow)
{
ui->setupUi(this);
}
MainWindow::~MainWindow()
{
delete ui;
}
void MainWindow::on_horizontalSlider_maxEpochs_valueChanged(int value)
{
ui->lcdNumber_maxEpochs->setSegmentStyle(QLCDNumber::Filled);
ui->lcdNumber_maxEpochs->display(value);
maxEpochs = value;
}
Write the implementation for the valueChanged()
signal.
Project
Step 21
We now have an interface for the maxEpochs
global variable.
Project
Step 22
Add an LCD for displaying a calculated floating
point value.
Project
Step 1
lcdNumber_result
Improves readability
Add a pushButton.
Project
Step 2
pushButton_Calculate
Right-click the pushButton, then
select Go to slot to assign a
function to it’s clicked() signal.
Write the implementation for the clicked() signal,
inside mainwindow.cpp.
Project
Step 3
void MainWindow::on_horizontalScrollBar_valueChanged(int value)
{
ui->lcdNumber_maxEpochs->setSegmentStyle(QLCDNumber::Filled);
ui->lcdNumber_maxEpochs->display(value);
maxEpochs = value;
}
void MainWindow::on_pushButton_Calculate_clicked()
{
float result=0.0;
result = maxEpochs * 2.2; //some hypothetical formula
ui->lcdNumber_result->display(result);
update();
QCoreApplication::processEvents();
}
Sample run.
Project
Step 4
pushButton_Calculate
Performs a simple calculation:
30 * 2.2
Project
Mouse cursor How to change the mouse cursor to indicate busy
calculation activity.
Add the following header first, in order to access
the mouse cursor methods:
#include
QApplication::setOverrideCursor(QCursor(Qt::WaitCursor));
//perform lengthy operations here…
QApplication::restoreOverrideCursor();
Add more widgets
Project
Step 5
pushButton
plainTextEdit_results
How to update the gui’s display while running a
loop?
Project
Widget’s
display
contents By calling processEvents(), the display of the
widget named ui->plainTextEdit_results will be
updated for each iteration.
By calling processEvents(), the display of the
widget named ui->plainTextEdit_results will be
updated for each iteration.
void MainWindow::on_pushButton_clicked()
{
QString msg;
for(int i=1; i < maxEpochs; i++){
msg.clear();
msg.append("Epoch = ");
msg.append(QString::number(i));
ui->plainTextEdit_results->setPlainText(msg);
QCoreApplication::processEvents(); // qApp->processEvents();
QThread::msleep(50); //delay of 50 msec.
}
}
void MainWindow::on_pushButton_clicked()
{
QString msg;
for(int i=1; i < maxEpochs; i++){
msg.clear();
msg.append("Epoch = ");
msg.append(QString::number(i));
ui->plainTextEdit_results->setPlainText(msg);
QCoreApplication::processEvents(); // qApp->processEvents();
QThread::msleep(50); //delay of 50 msec.
}
}
Example:
requires requires #include #include
Assignment #2
Letter Recognition using Deep Neural
Nets with Softmax Units
 Learning Objective: Implement backpropagation
learning algorithm for a deep network classifier system.
Consider different weight-update formula variations,
hyperparameter settings, optimization strategies to get the
best network configuration. Apply modern training
techniques.
Letter Recognition Problem
UCI’s Machine Learning Repository
Classification Task: Identify
each of a large number of black and-white rectangular pixel
displays as one of the 26 capital
letters in the English alphabet.
Source: character images based
on 20 different commercial
fonts and each letter within
these 20 fonts was randomly
distorted to produce a file of
20,000 unique stimuli.
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Data Set
History:
 P. W. Frey and D. J. Slate (Machine Learning Vol 6 #2 March 91):
"Letter Recognition Using Holland-style Adaptive Classifiers".
 The best accuracy obtained was a little over 80%
Challenge: Using modern deep network training techniques, we would
like to find out what is the best accuracy we can obtain.
DATA SET:
Number of Instances: 20,000
 Missing Attribute Values: None
INPUTS:
16 primitive numerical attributes (statistical moments and edge
counts)
UCI’s Machine Learning Repository
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Data Set
INPUTS:
16 primitive numerical attributes (statistical moments and edge counts)
UCI’s Machine Learning Repository
Hand-crafted Input Features
INPUTS:
16 primitive numerical attributes (statistical
moments and edge counts)
UCI’s Machine Learning Repository
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
The attributes (before scaling to 0-15 range) are:
1. The horizontal position, counting pixels from the left edge of the image, of the center
of the smallest rectangular box that can be drawn with all "on" pixels inside the box.
2. The vertical position, counting pixels from the bottom, of the above box.
3. The width, in pixels, of the box.
4. The height, in pixels, of the box.
5. The total number of "on" pixels in the character image.
6. The mean horizontal position of all "on" pixels relative to the center of the box and
divided by the width of the box. This feature has a negative value if the image is "leftheavy"
as would be the case for the letter L.
7. The mean vertical position of all "on" pixels relative to the center of the box and divided
by the height of the box.
Hand-crafted Input Features
UCI’s Machine Learning Repository
8. The mean squared value of the horizontal pixel distances as measured in 6 above. This attribute will
have a higher value for images whose pixels are more widely separated in the horizontal direction as
would be the case for the letters W or M.
9. The mean squared value of the vertical pixel distances as measured in 7 above.
10. The mean product of the horizontal and vertical distances for each "on" pixel as measured in 6 and 7
above. This attribute has a positive value for diagonal lines that run from bottom left to top right and a
negative value for diagonal lines from top left to bottom right.
11. The mean value of the squared horizontal distance times the vertical distance for each "on" pixel.
This measures the correlation of the horizontal variance with the vertical position.
12. The mean value of the squared vertical distance times the horizontal distance for each "on" pixel.
This measures the correlation of the vertical variance with the horizontal position.
13. The mean number of edges (an "on" pixel immediately to the right of either an "off“ pixel or the
image boundary) encountered when making systematic scans from left to right at all vertical positions
within the box. This measure distinguishes between letters like "W" or "M" and letters like 'T' or "L."
14. The sum of the vertical positions of edges encountered as measured in 13 above. This feature will
give a higher value if there are more edges at the top of the box, as in the letter "Y.“
15. The mean number of edges (an "on" pixel immediately above either an "off" pixel or the image
boundary) encountered when making systematic scans of the image from bottom to top over all
horizontal positions within the box.
16. The sum of horizontal positions of edges encountered as measured in 15 above. http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Hand-crafted Input Features
INPUTS:
16 primitive numerical attributes (statistical moments and edge counts)
scaled to fit into a range of integer values from 0 through 15.
1. lettr capital letter (26 values from A to Z)
2. x-box horizontal position of box (integer)
3. y-box vertical position of box (integer)
4. width width of box (integer)
5. high height of box (integer)
6. onpix total # on pixels (integer)
7. x-bar mean x of on pixels in box (integer)
8. y-bar mean y of on pixels in box (integer)
9. x2bar mean x variance (integer)
10. y2bar mean y variance (integer)
11. xybar mean x y correlation (integer)
12. x2ybr mean of x * x * y (integer)
13. xy2br mean of x * y * y (integer)
14. x-ege mean edge count left to right (integer)
15. xegvy correlation of x-ege with y (integer)
16. y-ege mean edge count bottom to top (integer)
17. yegvx correlation of y-ege with x (integer)
UCI’s Machine Learning Repository
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Letter Recognition Data Set
 INPUTS:
16 primitive numerical attributes (statistical moments and edge
counts)
scaled to fit into a range of integer values from 0 through 15.
TRAINING and TEST SET:
 We typically train on the first 16,000 items and then use the
resulting model to predict the letter category for the remaining
4,000. See the article cited for more details.
UCI’s Machine Learning Repository
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Note: We can normalize the inputs (e.g. between [0 to 1]), before feeding them
to the network.
Note: We can normalize the inputs (e.g. between [0 to 1]), before feeding them
to the network.
NN architecture
use Softmax
units
At the output
layer
Minimum of 2 hidden layers
Dataset: Dataset: complete_data_set.txt complete_data_set.txt
Build folder
 Copy the dataset into the build folder to make it
accessible to the program.
Read the dataset contained in
complete_data_set.txt
Load the saved weights
contained in weights.txt
Save the weights resulting from
training. Filename: weights.txt
Max Epochs (may use either
a slider or a spinner widget)
Learning rate (may use either a
slider or a spinner widget)
Train the network using iterative
minimization of error
Randomly initialize the weights
of the network.
As we have learned, shuffling the
training data is important so we
have a data shuffling button
here.
L2 regularization
SSE on Training data Percentage of Good
Classification on Training data
Percentage of Good
Classification on Training data
SSE on Test data Percentage of Good
Classification on Test data
Percentage of Good
Classification on Test data
Single input data pattern
Classification result
Test the input data using the
network
What should I set to compile a Qt program after
moving it to another directory?
1. Firstly, delete any file with the extension .pro.user, as they are
created specific to the user’s directory structure, and must be
regenerated after moving a project to another folder.
• e.g. LetterRecognition.pro.user
2. When you are in Qt creator you should rerun qmake. Go to the
left pane where you typically find "Projects" otherwise select
projects. Go to the project name and do a right click, select
"Run qmake".
3. It’s important to note that a path name (very deep directory
structure) that is very long could cause some problems. Simply
reduce the name or move the folder closer to the root dir.

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图