代做ECMT1010 Introduction to Economic Statistics Semester 2 - 2024代做留学生SQL语言程序

School of Economics

ASSIGNMENT

Semester 2 - 2024

ECMT1010 Introduction to Economic Statistics

Due: 11.59PM Friday 25 October 2024

Instructions

i.  Use your assigned data set (see below).  Use of the wrong data set will result in low marks (because most of your answers will be wrong).

ii.  Submit your answers as a PDF file.  DO NOT include a cover page as Turnitin will detect this as a similarity match.

iii. Answer all questions.  Show numerical answers to 3 decimal places.  Carry out all tests at a 5% level of significance.

iv. Work submitted after the due date is subject to a penalty of 1 mark (5%) per calendar day late. Work submitted after 11.59PM Sunday 10 November 2024 will receive a mark of 0.

Aim: The assignment uses Excel and StatKey to analyze data.

Data description: Your assigned data set contains height and weight information on 400 randomly-selected American adults. The adults are weighed in 2004 and again in 2011.

 Your assigned data set is available on Canvas.

•  The ID column identifies each individual (and can be ignored), FEMALE is each adult’s sex (female = 1, male = 0), HEIGHT is each adult’s height (in inches), WEIGHT04 is each adult’sweight in 2004, and WEIGHT11 is the adult’sweight in 2011 (weight is measured in pounds).

QUESTIONS

1. Provide a clearly-labelled scatter plot of height and weight in your 2004 sample.  Explain your choice of variables on the vertical axis and the horizontal axis of the scatter plot. Comment on the scatter plot. [2 marks]

2.  Estimate the simple regression equation for weight in 2004 and height.  Test for the statistical signif- icance of the relationship.  List your notation, the null and alternative hypotheses, the test statistic, decision rule, and conclusion to the test. [2 marks]

3.  Give an interpretation of the intercept and slope in the regression equation. [2 marks]

4.  Convert the height and 2004 weight data to metric using the conversions 1 pound = 0.45359237 kilograms and 1 inch = 2.54 centimetres.  Estimate the regression equation using the metric data. What do you notice when you compare the R2 for the metric data and non-metric data equations? How do you explain your finding? [2 marks]

5. You will see that the slope estimates from the metric data and non-metric data regression equations are quite different. Show how the slope estimate from the metric data can be derived exactly from the slope estimate from the non-metric data. [2 marks]

6.  Estimate the simple regression equation for weight in 2011 and height.  Explain why the R2  for 2011 weight is lower than in the regression reported in Question 2. [2 marks]

7.  Use the bootstrap to construct a 99% confidence interval for the population height difference between females and males.  Show your bootstrap distribution along with the lower and upper bounds of the confidence interval. What does the confidence interval imply about the null hypothesis that there is no difference in the population between average female and male height? [2 marks]

8.  Test the hypothesis that, on average, males have gained more weight than females between 2004 and 2011.  List your notation, the null and alternative hypotheses, the test statistic, decision rule, and conclusion to the test. [2 marks]

9. According to Tucker & Parker (2022) Journal of Obesity,  16% of American adults gained more than 2% of their body weight per year over a 10 year period.  To test support for this hypothesis over the 7-year period in your sample, construct a new variable called GAIN14PCT in your data set such that GAIN14PCT =  1 if an individual gained more than 14% of their initial weight between 2004 and 2011, and GAIN14PCT = 0 otherwise.  What is the interpretation, in plain English, of the mean of GAIN14PCT? [2 marks]

10. Test support for this hypothesis over the 7-year period in your sample. List your notation, the null and alternative hypotheses, the test statistic, decision rule, and conclusion to the test. [2 marks]

 


 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图