代做Computational Optimization Assignment #2调试SPSS

Computational Optimization

Assignment #2

Problem 1

a)   Show that the number of nodes in a tree where we represent all possible combinations of m 0-1 binary variables is

2m+1 - 1

b)  If a complete enumeration of all the nodes in the tree were required, by what factor would this enumeration increase with respect to the direct enumeration of all 0-1 combinations.

Problem 2

Given is the integer programming problem

max y1 + 1.2y2

s.t. y1 + y2  ≤ 1

0.8y1 + 1.1y2  ≤ 1

y1, y2 {0, 1}

a)   Plot the contours of the objective and the feasible region for the case when the binary variables are relaxed as continuous variables y1, y2  ∈ [0, 1].

b)  Determine from inspection the solution of the relaxed problem (i.e. finding the solution by inspecting each feasible solution in the plot).

c)   Enumerate the four 0-1 combinations in your plot (for all possible values of y1, y2) to find the optimal solution.

d)  Solve the above problem with the branch and bound method by enumerating the nodes in the tree and solving the LP subproblems with GAMS/Pyomo.

Problem 3

A company is considering to produce a chemical C which can be manufactured with either process II or process III, both of which use as raw material chemical B.  B can be purchased from another company or else manufactured with process I which uses A as a raw material. Given the specifications below, formulate an MILP model and solve it with GAMS/Pyomo to determine:

a)    Which process to build (II and III are exclusive)?

b)    How to obtain chemical B?

c)    How much should be produced of product C? The objective is to maximize profit.

Consider the two following cases:

1.    Maximum demand of C is 10 tons/hr with a selling price of $1800/ton.

2.    Maximum demand of C is 15 tons/hr; the selling price for the first 10 ton/hr is $1800/ton, and $1500/ton for the excess.

Data:

Investment and Operating Costs

Fixed ($/hr)                                Variable($/ton raw mat)

Process I

1000

250

Process II

1500

400

Process III

2000

550

Prices:    A:     $500/ton

B:     $950/ton

Conversions:

Process  I 90% of A to B

Process II 82% of B to C

Process III 95% of B to C

Maximum supply of A:  16 tons/hr

NOTE:   You may want to scale your cost coefficients (e.g. divide them by  100). Please avoid using any nonlinear term in the model formulation, because the model should an MILP. Please make sure to add ‘option ptcr = 0’ in your GAMS code. Please submit your source code file as well.

Problem 4

[Note: This is a bonus problem and not required – those students may work on it to earn an extra credit of at most 2 points that will be used to offset any possible loss of points from other problems, which are worth 10 points in total.]

Given are the following two optimization problems:

min z1  = f (x)

s.t. g (x ) 0

P1: h (x) 0

x Rn

min z2  = f (x)

P2: s.t. g (x) + h(x) 0

x Rn

where g(x) and h(x) are continuous and differentiable functions.

a)   Show that the optimal objective function values of the above problem obey the following inequality: (z ) ≥ (z )

b)  Does the above inequality rely on the assumption that the functions g(x) and h(x) are convex?

Problem 5

Prove that y2  + y3 + 2y4 6   is a valid Gomory cut for the following feasible region.

X = {y Z4+ 1 + 5y2  + 9y3 +12y4 34} .

Problem 6

The nonlinear term, Z = x . y, where x, y ∈ {0,1}  and Z ∈ ℝ . Please reformulate this mixed- integer nonlinear equation into a set of mixed-integer linear inequalities with exactly the same feasible region.

Problem 7

[Note: This is a bonus problem and not required – those students may work on it to earn an extra credit of at most 2 points that will be used to offset any possible loss of points from other problems, which are worth 10 points in total.]

Consider the following optimization problem:

min  |x1| + 2|x2| − |x3|

st x + x x 10

x1 − 3x2  + 2x3  = 12

− 50 ≤ x1  ≤ 20

(a) Please reformulate it into  a mixed-integer linear program,  and  solve this  MILP with GAMS/Pyomo.

(b) Please solve the original problem with absolute value terms with a deterministic global optimization solver BARON or Couenne, and compare the resulting optimal solution with the one from (a).





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图