代写FBE 506 Quantitative Methods in Finance Fall 2024代做留学生Matlab编程

FBE 506 Quantitative Methods in Finance

Fall 2024

Course Description:

FBE 506 is a required course in the MS Finance program that aims to develop single and multi-variable mathematical and statistical models used in many practical problems of modern finance and economics.

Course Objectives:

Upon successfully completing this course, students will be able to:

1. Summarize sample data in descriptive statistics for making inference from sample to population using proper distribution theories.

2. Build simple economic and financial models, collect data and apply statistical methods for estimating the model, hypothesis testing, and forecasting.

3. Compute different measures of risk to investment and learn about their use in practice.

4. Combine several stocks into a portfolio and optimize the risk and return relation of the portfolio by minimizing the risk for an expected return or by maximizing return for an assumed risk tolerance.

5. Use statistical techniques to measure the effects of the changes in economic conditions or the effects of the special events on risk and return to securities and portfolios.

6. Do pricing of complex securities such as American and European options.

Course Materials:

I will be using chapters of my own manuscript. titled, Quantitative Methods in Finance Using R as the text book for the course.  The files will be posted under the Content tab of the course site on Brightspace. A recommended textbook for the course is, Quantitative Methods in Finance: Market Risk Analysis I, by Carol Alexander, John Wiley & Sons Ltd, 2010, ISBN: 978-0-470-99800. There is no perfect textbook that would systematically cover all the topics discussed in this course. Therefore, topics not covered by the textbook will be supplemented by the notes posted on Brightspace. For students who may need more detailed description of the statistical concepts, a recommended book is Statistics for Business and Economics, 12e, by Anderson, Sweeney and Williams, Cengage, ISBN: 978-1-133-27453-7. For a step by step application of statistics to data, I recommend https://www.statssolver.com/ an app that you can use in your computer or your cell phone. As well, you have to have access to one of the following statistical software to be able to complete the course assignments. These statistical software in order of user friendliness are, E-Views by Quantitative Micro Software; http://www.eviews.com, Stata; http://www.stata.com, or R; https://www.rstudio.com/products/. Although you may use any of the three statistical software for doing the course assignments, I will be using only R for the lectures and solutions to the assignments. You should make yourself familiar with R outputs.  Some of the questions in the tests will be based on R output. You are required to be sufficiently familiar with the topics assigned for each class meeting prior to the class so that they can intelligently be discussed and practiced in the class.

Grading Policy:

The course grade will be computed based on the following table:

        Points          % of Grade

HW assignments                                                              50                        10%

Course project and report                                                 100                       20%

Midterm 1                                                                       100                        20%

Midterm 2                                                                       100                        20%

Final Exam                                                                      150                        30%

Total              500                      100%

Course final grades will be determined using the following scale:

Letter grade

Numerical point range

A

95-100

A-

90-94

B+

87-89

B

83-86

B-

80-82

C+

77-79

C

73-76

C-

70-72

D+

67-69

D

63-66

D-

60-62

F

59 and below

Final grades represent how you perform. in the class relative to other students.  The average grade for this class is expected to average about 3.5.  Three items are considered when assigning final grades:

1.    Your average weighted score as a percentage of the available points for all assignments (the points you receive divided by the number of points possible).

2.    The overall average percentage score within the class.

3.    Your ranking among all students in the class.

Class Participation and Contribution

Per USC grading policy, no portion of the grade may be awarded for class attendance, but non- attendance can be the basis for lowering a grade. To familiarize myself with your names, each class meeting, I will call the names of a few students randomly.  Students who receive two “no shows” during the random calls may lose 5% credit, unless they provide a legitimate excuse for missing the classes that can be documented and verified. Students can earn 10% credit for class participation and contribution by actively participating in class discussions, problem solving, discussing on-going current economic issues and else. Volunteering to solve an assignment in the class, providing the class with a reference to an interesting article or economic debate, or discussing the relevance of a certain economic subject studied in the class to their own work experience are examples of active class participation.

HW Assignments

There are  ten homework assignments posted under the Content tab of Brightspace.  You are responsible for solving and submitting only seven of the ten assignments on due dates. I highly advise you to review the other three assignments as well.  We will be solving some of those questions in the class. Completed homework assignments should be dropped in the Brightspace Dropbox on dates listed on the syllabus. No late HW will be graded. If you miss the HW deadline a score of zero will be assigned to HW. The test questions in the mid-term exams and the final exam will be similar to the homework assignments.  Therefore, I highly recommend that you work on the assignments and learn by doing. You my work with other students in a group or consult with other students in doing the HWs. However, copying other students’ work is absolutely forbidden. The solutions to HW assignments will be posted under the Content tab of the course site on Brightspace.

Midterm Exams

There will be two midterm exams. Each test will be worth 20% of the course grade and will test all the material covered up to the exam. If you miss the exam for any reason other than medical emergency, a score of zero will be assigned to the exam. If you miss the exam on account of a proven medical emergency a makeup exam should be arranged as soon as the medical emergency is over.

Final Exam

The final exam will be comprehensive but will emphasize the material covered after the midterm two. The final exam will be worth 30% of the course grade.   If you miss the final exam for a medical emergency reason that can be documented and verified, there will be a makeup final to be arranged as soon as possible.  Otherwise, a grade of zero will be assigned to the final exam.  All the exams in this course are closed notes and closed book.

Course Project and Report

You are required to work on one applied project. The project will concentrate on the application of the techniques taught during the semester to a portfolio that you will construct. Select five stocks from three different industries (for the list of the firms in different industries see, https://biz.yahoo.com/p/sum_conameu.html). Using Modern Portfolio Theory (MPT) and monthly adjusted closing prices of the stocks for three years, allocate a hypothetical amount ($100) on the selected securities. Apply the techniques learned in the class to your portfolio as the course proceeds. A detailed list of what is required in the course project is posted under the Content tab of the Brightspace. You are required to submit a one-page progress report on the dates listed on the Course Outline. The idea behind the course project is to apply the quantitative skills learned in this course to the portfolio index of your own construction. The project will be worth 100 points and will be graded as any test is graded. You have to show your knowledge of the subject matter as well as the skills in applying the quantitative methods in analyzing and explaining statistical results. You are required to submit your names and the list of the selected securities no later than the third week of the semester. An electronic copy of the completed project should be submitted to the Dropbox on the course site on Brightspace on due date listed on the course syllabus.

Open Expression and Respect for All

An important goal of the educational experience at USC Marshall is to be exposed to and discuss diverse, thought-  provoking, and sometimes controversial ideas that challenge one’s beliefs. In this course we will support the values articulated in the USC Marshall Open Expression Statement.”

Class Etiquette

This is a large class and I need your cooperation in ensuring orderly conduct of the lectures.

•    Please arrive on time and turn your cellular phones off before entering the class.

•    You can bring your laptop to the class to take notes from the lectures or work on problems assigned as in- class practice.

•    Don’t have a conversation or chat with a classmate during the lectures.  Even a quiet chat can be distracting for other students.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图