代写COMP3425 and COMP8410 Data Mining S1 2024 Assignment 2代写C/C++语言

COMP3425 and COMP8410 Data Mining S1 2024

Assignment 2: Description of Data

Data and Metadata

The data supplied for the assignment arises from The Australian  Data Archive’s  ANU  Poll Dataverse [1]. As a student of the course, you are assumed to accept the Terms and Conditions of Use reproduced below. Please read them carefully. The custodian of the data has further requested you delete your data at the end of the course. However, you would be able to obtain another copy by request at the Website.

In particular, the data captures the results of a survey poll conducted in late 2023 on the topic of the 14th  October 2023 Australian Constitutional Referendum on the Aboriginal and Torres Strait Islander Voice to Parliament.   You can find a complete description of the purpose of the poll and coding of the data (metadata) and also adescriptive summary of the poll results here:

https://dataverse.ada.edu.au/dataset.xhtml?persistentId=doi:10.26193/13NPGQ

The data is provided to you for the assignment. You have  original dataset as downloaded from the   ADA    called   02_ANUPoll_57_CSV_100150_general.csv,    in    comma-separated-values format.           This           data            is           described            by           the            metadata            in 01_ANUPoll_57_DataDictionary_100150_general.xlsx and the corresponding question text in 01_ANUPoll_57_Questionnaire_100150.docx

If you are a COMP3425 (undergraduate) student, you are required to undertake some pre- processing   steps   as   specified   in   the   assignment   specification.   If   you   are   COMP8410 (postgraduate) student you may choose your own preprocessing actions, but you may find that referring to the COMP3425  assignment specification will help you.

A Note on Data Types

Note that most of the data is either nominal or ordinal.  Many ordinal variables include some marker values that are not ordinal, but indicate unordered categories as exceptions to the ordinal values. Be careful that you do not blindly handle those marker values as ordinal, and that you do not treat nominal data as ordinal without specifically justifying why you do so.    Appropriate handling may depend on the mining methods you use.

You can translate a nominal variable that is, by default, loaded in Rattle as numeric, using Rattle’s “Transform” tab (Recode-> As Categoric).  Alternatively you can use Excel prior to loading by following the example here:

For example, for  nominal nominal p_state_sdc, the formula CONCATENATE("""",

<p_state_sdc>, """") is used. If the variable has empty cells that you want to map to the “0” nominal value, you can use the formula or CONCATENATE("""",

TEXT(<p_state_sdc>, "0"), """") . In both cases, replace the variable name, where we use <p_state_sdc> in these examples, by the Excel cell reference, such as FB2.

References

[1] Biddle, Nicholas; McAllister, Ian, 2023, "ANU Poll 57/Australian Constitutional Referendum Survey (ACRS) (October 2023): Aboriginal and Torres Strait Islander Voice to Parliament",

doi:10.26193/13NPGQ, ADA Dataverse, V4

Terms and Conditions of Use

This data has been distributed exclusively for students of COMP3425 and COMP8410 S1

2024 only. Data must be destroyed at the end of the course but maybe re-obtained by request to the Australian Data Archive.

Furthermore, from

https://dataverse.ada.edu.au/dataset.xhtml?persistentId=doi:10.26193/13NPGQ

Iacknowledge that:

1. Use of the material is restricted to use for analytical purposes and that this means that I can only use the material to produce information of an analytical nature. Examples of such uses are:

(a) the manipulation of data to produce means, correlations or other descriptive summary measures;

(b) the estimation of population characteristics from sample data;

(c) the use of data as input to mathematical models and for other types of analyses (e.g. factor analysis); and

(d) to provide graphical and pictorial representation of characteristics of the population or sub-sets of the population.

2. The material is not to be used for any non-analytical purposes, or for commercial or financial gain, without the express written permission of the Australian Data Archive.   Examples of non-analytical purposes are:

(a) transmitting or allowing access to the data in part or whole to any other person / Department / Organisation not a party to this undertaking; and

(b) attempting to match unit record data in whole or in part with any other information for the purposes of attempting to identify individuals.

3. Outputs (such as statistics, tables and graphs) obtained from analysis of these data may be further disseminated provided that I:

(a) acknowledge both the original depositors and the Australian Data Archive;

(b) acknowledge another archive where the data file is made available through the Australian Data Archive by another archive; and

(c) declare that those who carried out the original analysis and collection of the data bear no responsibility for the further analysis or interpretation of it.

4. Use of the material is solely at my risk and I indemnify the Australian Data Archive and its host institution, The Australian National University.

5. The Australian Data Archive and its host institution, The Australian National University, shall not beheld liable for any breach of this undertaking.

6. The Australian Data Archive and its host institution, The Australian National University,  shall not beheld responsible for the accuracy and completeness of the material supplied.

7. Once access has been granted to the data, abuses of access rights, breaches of this undertaking, or failure to keep the data safe, may result in the application of restrictions.

Restrictions will escalate in severity depending upon the seriousness of the breach and vary from termination of access to the user and/or institution, on either a temporary or permanent basis, through to potential legal action in the most extreme cases.

8. I will notify promptly the ADA of any non-compliance with these Terms and Conditions of Use or of any infringements of the data, including unintentional disclosure or any errors within the data of which I become aware.

9. At the conclusion of my research notify of use. This may include the offer of publication to the ADA any new dataset that has been derived from the materials supplied or which have been created by the combination of the material supplied with other available data. The deposit of the derived dataset will include sufficient supporting documentation to enable the new dataset to be made accessible to other users.







热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图