代做EEC180 — DIGITAL SYSTEMS II WINTER QUARTER — 2023 FINAL EXAM代写数据结构语言程序

EEC180 — DIGITAL SYSTEMS II

WINTER QUARTER — 2023 — 5 UNITS

FINAL EXAM

1.  IEEE 754 STANDARD (25 POINTS)

Consider the two numbers A = 4.0 and B = -2.5. We would like to use the IEEE 754 standard representation. In this problem, we assume a 16-bit representation with 1 bit for sign, 5 for expo- nent in excess-15 notation (means the bias is 15), and 10 bits for the mantissa.

1. What is the minimum positive number that can be represented if the significand is normalized? (4 points)

2. What is the maximum positive number that can be represented? (4 points)

3. What decimal number is represented by the bit pattern 1000000000000111? (4 points)

4. Find the IEEE 754 binary representation of the numbers A and B. (5 points)

5. Compute P  A × B using the binary (not decimal) floating-point representations of A and B. (8 points)

2.  MEMORY DESIGN (25 POINTS)

Suppose that we have the following memory chips:

M1: 128K × 2             M2:  128K × 2              M3:  128K × 4

M4: 128K × 8             M5: 256K × 2             M6: 256K × 2

M7: 256K × 4

Each of the above memory chips comes with tri-state bidirectional data input/output connec- tions. You can assume that each chip has the following ports: address a, data d, enable en, and write wr. Note that if wr = 0, the chip works in a read mode.

We would like to build a memory system  2m  × n  using all of the above chips. All chips must be completely utilized.

1. What are the possible values of m? For each value of m, find the corresponding value of n. (10 points)

2. If n = 8, show a complete diagram (including the decoding logic) for the memory system. (15 points)

3.  COUNTERS (25 POINTS)

Consider a 5-bit binary counter with the following specifications:

•    The counter has a clock input as well as a synchronous input reset. It also has a count out- put.

•    The counting sequence of the counter is as follows: 0, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31, and repeat.

    The counter resets (count = 0) when reset = 1.

Write a Verilog model for the counter that should not be more than 10 lines of code.

4.  FSM IMPLEMENTATION (25 POINTS)

A Mealy finite state machine (FSM) has one data input x and two outputs y and z. The output y  =  1  occurs when 00 or 01 is observed on the input x. The output z  =   1  occurs when 00 or 10 is observed on the input x. The finite state machine also has a synchronous input reset. When reset  =  1 , the next state in the FSM will be state S0 independent of the value of x. The state dia- gram of this machine (without showing the reset input) using the minimum number of states is shown below.

1. Write a behavioral verilog model of the finite state machine. (7 points)

2. Design a circuit (with inputs x and reset, and outputs y and z) that implements the above state diagram and uses one-hot encoding for the state assignment. Assume that the only   available components are D flipflops (with Q output) and 2-input NOR gates. Make sure to use the minimum number of NOR gates. (7 points)

3. Write a verilog model for a D flip-flop (with Q output). (2 points)

4. Write a verilog model for a 2-input NOR gate. (2 points)

5. Write a structural verilog model of your design in part 2 using the components described in parts 2 and 3. (7 points)

5.  FPGA IMPLEMENTATIONS (25 POINTS)

Assume that we have an FPGA with a simple Configurable Logic Blocks (CLBs). Each CLB in the FPGA has one output that can implement any function with 4 variables using a 4-input look-Up Table. The diagram of the CLB is shown below:

In the parts below, assume that we can always route the signals successfully among the CLBs.

1. What is the minimum number of CLBs needed to implement any function with 5 variables? (5 points)

2. What is the minimum number of CLBs needed to implement any function with 6 variables? (5 points)

3. What is the minimum number of CLBs needed to implement a 4-bit ripple carry adder? (5 points)

4. What is the minimum number of CLBs needed to implement an 8-to-1 multiplexor? (5 points)

5. What is the minimum number of CLBs needed to implement an 16-to-1 multiplexor? (5 points)

 

 

 

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图