代做COMP2K、代写Python程序设计
Computing
Instructions
Recommended you complete this part by the end of Week 12.
You should demo this lab in your Week 13 practical session.

[You must demonstrate it to the instructor in one of your practical sessions BEFORE the due date in
order to be awarded marks. Please check the ECP for the correct due date. Note that sections are
‘complete’ and marks are awarded by attempting each task AND correctly answering related
questions to the satisfaction of the instructor.]
Quantum computing is a form of computation that uses quantum phenomena such as superposition
and entanglement that forms an essential part of quantum mechanics. Quantum mechanics describes
physics of matter at the extraordinarily small scale surprisingly accurately and is the most successful
physical theory of the universe we currently have being able to predict outcomes to an accuracy of up
to 10-11 decimal places! See for example Chapter 15 of (Moore and Mertens, 2011) for an
introduction. Quantum computing’s pervasiveness will only increase as it comes out of infancy and
there continues to be major advancements as now there are known to be several quantum computers
in existence. It is expected to become prominent part in computing and algorithms of the future by
creating a new series of quantum algorithms that surpass the computational power of classical
supercomputers by “harnessing” the power of quantum computation and is one of the 21st century’s
biggest challenges.
Quantum computers uses quantum bits or ‘qubits’, bits that are in superposition of between states
instead of being either on or off and being in one or the other state (like a classical binary bit). Qubits
still collapse into binary bits, but its actual final state has a probabilistic outcome given by a probability
density as opposed to a deterministic one.
In this laboratory we’ll be using Qiskit, an open-source framework for quantum computing that allows
you to simulate and use real quantum bits on IBM’s quantum computers. There are a few different
ways of using Qiskit:
• You can use Qiskit through IBM’s online environment, accessible here.
• You can install Qiskit as a Python library through here.
This laboratory will allow you to explore qubits and the different classical and quantum operations
you can use to manipulate qubits in a quantum circuit. Qiskit’s documentation can be found here.

Section I – Microsoft Seminar
Microsoft released an extremely useful, self-contained seminar on quantum computing that is a very
valuable resource if you find the concepts in this laboratory difficult to follow:
Seminar on Quantum Computing for Computer Scientists – https://youtu.be/F_Riqjdh2oM
Try getting a handle of quantum computing concepts from the video and playing with the mathematics
of the quantum mechanical operators before you start the following section. See for example
equations (6.23) to (6.46) from Shakes’ book. Chapter 15 of (Moore and Mertens, 2011) also provides
a great introduction to the area, including all the necessary quantum mechanical preliminaries.
Although you do not receive marks for this section and you do not have to complete the entire video,
there is significant overlap with the video and the requirements of the next section that do award
marks.
COMP2048 Theory of Computation S. S. Chandra
2

Section II – Qiskit (10 Marks)
Complete the following exercises using your knowledge of quantum computing, quantum algorithms
and quantum circuits using Qiskit or IMB Composer. All documentation including circuits, code,
results and accompanying notes must be submitted as a zip file as part of your submission on
Blackboard.
-------------------------------
[See the relevant sections of Shakes’ book, Chapter 15 of (Moore and Mertens, 2011) and the
Microsoft Seminar video for hints]
1. What does a Hadamard gate do?
(1 mark)
2. Draw and simulate a simple quantum circuit with three qubits that returns |111> with certainty.
(0.5 mark)
3. Draw and simulate a quantum circuit with three qubits that returns |111⟩ or |101⟩ with 50%
probability each.
(0.5 mark)
4. Draw and simulate a quantum circuit with three qubits that returns |000⟩, |001⟩, |010⟩, |011⟩,
|100⟩, |101⟩, |110⟩, or |111⟩ with equal probability.
(0.5 mark)
5. Make and simulate a quantum circuit whose final Bell state is
1
√2
(|01⟩− |10⟩).
(2.5 marks)
6. Simulate a coin toss using qubit(s) in a quantum circuit. Why does this lead to better ‘randomness’
than a normal/classical coin toss? How could you extend this to be a random number generator?
(2 marks)
7. Implement a solution to the 1-bit Deutsch oracle problem as discussed in lectures (using the
Deutsch-Jozsa Algorithm). Description in section 15.4.1 in (Moore and Mertens, 2011) may also
be useful.
(3 marks)



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图