代做MTH208: Coursework II代做Matlab语言

MTH208: Coursework II

• Total marks for the coursework are 15.

• You just need to choose one of the following two questions to write a report.

• You may complete the work by using the provided solution sheet in word or tex.

• Please submit the completed solution via a submission link provided on the LMO.

• All the learning materials on the LMO can be referenced including lecture notes, Lab codes, extra reading materials. However, you must complete the coursework independently.

• Please convert your file into pdf before submission.

• Please name your submission in the form. MTH017Final+ID+ZhangSan.pdf

• The coursework will be available on 9:00AM May 15th and deadline for submission is 9:00AM May 25th.

Question I

The absolute value function

f(x) = |x|, x ∈ [−1, 1]

is a continuous function, non-differentiable at x = 0. Approximating this function by polynomials played a significant role in the early development of approximation theory. In 1908, the Belgian mathematician de la Vall´ee-Poussin raised the question of finding the best approximation of the absolute value function on the interval [−1, 1]. This problem attracted the attention of several leading mathematicians of that period. Approximating the function |x| by means of polynomials or other functions was studied inten-sively starting with the beginning of the 20th century.

The objective of this project is to explore and compare various numerical methods (interpolation with various basis or fitting in discrete and continuous cases) for approximating the absolute value function. You may provide basic ideas of each numerical method, give the implementation details and then compare their performance in terms of accuracy, implementation details and computational efficiency (You don’t need to include the code in the report).

You are encouraged to refer to textbooks, academic papers, and online resources on numerical methods for function approximation to enrich your understanding and implementation of the numerical methods. By incorporating these additional details, you are expected to be prompted to delve deeper into the theoretical and practical aspects of numerical methods, enabling a more comprehensive exploration and comparison of the methods for approximating the absolute value function.

The assessment of the report will mainly consider two parts:

(i) the content of the report (10 marks) including research contribution, methodology and analysis, results and discussions;

(ii) format of the report (5 marks) including clear structure and format, clear figures and tables with captions, proper citations and references, precise presentation of results.

In the report, you may consider but not limited to the following chapters:

Introduction; Numerical methods & implementation details; Numerical Results; Conclusions; References etc.

You may refer to the format of the paper in box: https://box.xjtlu.edu.cn/f/6ace2cdbfb3e4643a9ba/

Question II

It has been found by Mandelbrot (1963) that financial asset returns are heavy tailed random variables. The expected shortfall (ES) is a very useful measure of the risk. For a continuous random variable X, its cumulated distribution function (cdf) is FX(x) := P(X ≤ x) and its probability density function (pdf) is fX(x) := F'X(x). The quantile function of X is

QX(p) = inf {x | FX(x) ≥ p} .

The expected shortfall of X at the level γ is defined as

Assume X obeys the normal inverse Gaussian (NIG) distribution. NIG is defined as follows. First, we denote the modified Bessel function of the second kind with the index ν as Kν(x). Then, the NIG pdf is defined as

Your first task is to do a search on the definitions of Kν. There are definitions by differential equations and by integrals. Then, try to implement the function numerically on computer, and compare your result with the Matlab built-in function besselk. Your second task it to implement a function to compute numerically the expected shorfall of X.

The assessment of the report will mainly consider two parts:

(i) the content of the report (10 marks) including research contribution, methodology and analysis, results and discussions;

(ii) format of the report (5 marks) including clear structure and format, clear figures and tables with captions, proper citations and references, precise presentation of results.

Reference

B. B. Mandelbrot, The variation of certain speculative prices, Journal of Business, 36 (1963), 394-419.






热门主题

课程名

int2067/int5051 bsb151 babs2202 mis2002s phya21 18-213 cege0012 mgt253 fc021 mdia1002 math39512 math38032 mech5125 cisc102 07 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 efim20036 mn-3503 comp9414 math21112 fins5568 comp4337 bcpm000028 info6030 inft6800 bcpm0054 comp(2041|9044) 110.807 bma0092 cs365 math20212 ce335 math2010 ec3450 comm1170 cenv6141 ftec5580 ecmt1010 csci-ua.0480-003 econ12-200 ectb60h3f cs247—assignment ib3960 tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 econ7230 msinm014/msing014/msing014b math2014 math350-real eec180 stat141b econ2101 fit2004 comp643 bu1002 cm2030 mn7182sr ectb60h3s ib2d30 ohss7000 fit3175 econ20120/econ30320 acct7104 compsci 369 math226 127.241 info1110 37007 math137a mgt4701 comm1180 fc300 ectb60h3 llp120 bio99 econ7030 csse2310/csse7231 comm1190 125.330 110.309 csc3100 bu1007 comp 636 qbus3600 compx222 stat437 kit317 hw1 ag942 fit3139 115.213 ipa61006 econ214 envm7512 6010acc fit4005 fins5542 slsp5360m 119729 cs148 hld-4267-r comp4002/gam cava1001 or4023 cosc2758/cosc2938 cse140 fu010055 csci410 finc3017 comp9417 fsc60504 24309 bsys702 mgec61 cive9831m pubh5010 5bus1037 info90004 p6769 bsan3209 plana4310 caes1000 econ0060 ap/adms4540 ast101h5f plan6392 625.609.81 csmai21 fnce6012 misy262 ifb106tc csci910 502it comp603/ense600 4035 csca08 8iar101 bsd131 msci242l csci 4261 elec51020 blaw1002 ec3044 acct40115 csi2108–cryptographic 158225 7014mhr econ60822 ecn302 philo225-24a acst2001 fit9132 comp1117b ad654 comp3221 st332 cs170 econ0033 engr228-digital law-10027u fit5057 ve311 sle210 n1608 msim3101 badp2003 mth002 6012acc 072243a 3809ict amath 483 ifn556 cven4051 2024 comp9024 158.739-2024 comp 3023 ecs122a com63004 bms5021 comp1028 genc3004 phil2617
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图